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Abstract
Endocrinopathic laminitis (EL) is a vascular condition of the equine hoof resulting in severe

lameness with both welfare and economic implications. EL occurs in association with

equine metabolic syndrome and equine Cushing’s disease. Vascular dysfunction, most

commonly due to endothelial dysfunction, is associated with cardiovascular risk in people

with metabolic syndrome and Cushing’s syndrome. We tested the hypothesis that horses

with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6) and

horses with EL (n = 6) destined for euthanasia were recruited. We studied vessels from the

hooves (laminar artery, laminar vein) and the facial skin (facial skin arteries) by small vessel

wire myography. The response to vasoconstrictors phenylephrine (10−9–10-5M) and 5-

hydroxytryptamine (5HT; 10−9–10-5M) and the vasodilator acetylcholine (10−9–10-5M) was

determined. In comparison with healthy controls, acetylcholine-induced relaxation was dra-

matically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar

arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ±
4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01). In addi-

tion, contractile responses to phenylephrine and 5HT were increased in intact laminar veins

from horses with EL compared with healthy horses; these differences were endothelium-

independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006)

and veins (P = 0.009) from horses with EL. Horses with EL exhibit significant vascular dys-

function in laminar vessels and in facial skin arteries. The systemic nature of the abnormali-

ties suggest this dysfunction is associated with the underlying endocrinopathy and not local

changes to the hoof.

Introduction

Laminitis is a crippling disease of the horse’s hoof resulting frommechanical failure of the lam-
inar tissue, an interdigitating fibrous structure which suspends the distal phalanx within the
hoof capsule. Failure of this tissue results in rotation and sinking of the distal phalanx causing
acute pain when the horse bears weight. This condition is of huge clinical significance affecting
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up to 34% of horses [1] and commonly necessitates euthanasia on welfare grounds. Up to 90%
of laminitis cases occur in association with the common conditions of Equine Cushing’s Dis-
ease (Pituitary Pars Intermedia Dysfunction, PPID) or EquineMetabolic Syndrome (EMS); so
called endocrinopathic laminitis (EL) [2]. The causal mechanisms that link these endocrine
disturbances with laminitis are unknown but since dysregulation of the blood flow to the lami-
nae in both acute sepsis-related laminitis [3] and in chronic forms [4, 5] has been demon-
strated, vascular dysfunctionmay represent a feasible link.
Human endocrine disturbances, such as Cushing’s syndrome and metabolic syndrome, are

associated with systemic vascular dysfunction contributing to increased cardiovascular risk in
these patients [6–8]. Endothelial dysfunction,manifest most commonly by failure of endothe-
lial-dependent vasodilation, is a common finding in patients with atherosclerosis secondary to
these conditions [9]. Given the complexities of these endocrine disturbances, it is difficult to
determine causality particularly when likely candidates for altering vascular function such as
insulin resistance, hyperinsulinaemia, cortisol dysregulation, inflammation and obesity often
occur simultaneously [10]. Endothelial dysfunction is the most common vascular dysfunction
associated with hyperinsulinaemia and insulin resistance in humans [11]. Insulin resistance is,
independent of other risk factors, correlated with cardiovascular risk in humans [12, 13], as is
obesity, specifically visceral body fat content [14] [15, 16]. In healthy human patients glucocor-
ticoids inhibit cholinergic vasodilation [17] and potentiate the action of vasoconstrictors [18].
Endogenous or exogenous hypercortisolaemia is associated with endothelial dysfunction and
increased risk of cardiovascular disease in human patients [19] [20] [21]. Numerous rodent,
rabbit and canine models of diabetes, obesity and Cushing’s syndrome have been used to
demonstrate endothelial dysfunction but there are little data on naturally occurring endocrine
disease in other species [22, 23]. Pituitary Pars Intermedia Dysfunction in horses, is due to ade-
nomatous or hyperplastic dysfunction of the pars intermedia of the pituitary and unlike other
species is not associated with hypercortisolaemia.
As in humans, horses with metabolic syndrome or PPID often have multiple risk factors

that are associated with endothelial dysfunction in humans. Insulin resistance and hyperinsu-
linaemia occur commonly in horses with EMS and PPID [24]. Horses with PPID are more
likely to have laminitis if they are hyperinsulinaemic [25] and hyperinsulinaemia is a poor
prognostic indicator for recovery from laminitis [26]. There is evidence that high dose insulin
infusion can induce laminitis in otherwise healthy horses but the vascular function of these
horses have not been investigated [27]. Generalised and regional adiposity and weight gain
are independent predictors of laminitis risk [28, 29]. Exogenous glucocorticoid administration
is, anecdotally, associated with the development of laminitis though convincing data of a
causal relationship is lacking [30]. Cortisol has been shown to potentiate the response to vaso-
constrictors in ex vivo studies of horses [31]. Treatments for laminitis have often empirically
targeted a presumed vascular dysfunctionwith limited success [32]. There is a critical need to
determine if vascular dysfunction occurs in these horses so that our understanding of this dis-
ease can be enhanced.
In this study we aimed to characterise the function of small resistance vessels of the hoof, as

well as remote systemic arteries of the facial skin, in healthy horses and those with EL. Though
much of the human and rodent work investigating vascular function focusses on arteries, there
is some evidence that, in laminitis, the laminar veins are differentially affected [33]. For this
reason, we chose to include laminar veins in our study. Given that there are recogniseddiffer-
ences between vascular beds in response to vasoactivemediators we chose to compare remote
arteries of the facial skin.
In this study, therefore, we address the hypothesis that vascular dysfunction, specifically

endothelial dysfunction, is a feature of EL and is not confined just to the vessels of the hoof.

Vascular Dysfunction in Horses
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Materials and Methods

Animals

This study was approved by the University of Edinburgh Veterinary Ethics and Research Com-
mittee (VERC 7014). Horses with chronic laminitis due to metabolic syndrome (EMS) or pitui-
tary pars intermedia dysfunction (PPID), and healthy controls, destined for euthanasia, were
recruited from clinics at the Royal (Dick) School of Veterinary Studies. All groups included
females and castrated males, reflecting the clinical population in the UK. The age, breed, sex,
body condition score (out of 5, a measure of obesity) [34], clinical features of previous laminitis
(abnormal hoof growth) and medical history (specifically history of laminitis and glucocorti-
coid administration) were recorded. Bloodwas obtained after overnight fasting, between 0900h
and 1100h, via an intravenous cannula inserted in the jugular vein for the purpose of euthana-
sia. ACTH, cortisol, and insulin concentrations were measured by chemiluminescent immuno-
assays validated for clinical use in the horse (Immulite 2000, Siemens, Camberley, UK) [35,
36]. Plasma triglycerides and glucose were measured using a colorimetricmethod based on the
modified Jaffe’s reaction (IL650 analyser, Instrumentation Laboratories, Barcelona, Spain).
Horses were humanely euthanased with intravenous quinalbarbitone sodium and cincho-

caine hydrochloride (1mL/10Kg bodyweight; Somulose, Dechra Veterinary Products, Shrews-
bury, UK).

Tissue Preparation

Immediately following euthanasia tissue was harvested from the dorsal hoof and facial skin.
The tissue was kept in physiological saline solution (PSS) at 4°C during dissection. Subcutane-
ous facial skin arteries (50–100μm in diameter) and laminar arteries and veins (100–500μm in
diameter) were dissected from the tissue [37].

Small Vessel Wire Myography

The vessels were divided into 2mm sections and stored overnight in PSS. Vessels were mounted
on intraluminal wires in myography baths containing PSS maintained at 37°C and perfused
with 95% O2/5%CO2 [37]. A minimum of 4 sections of each vessel were collected from each
horse. Once mounted two sections of laminar arteries, laminar veins and facial arteries from
each horse had the endothelium removed by rubbing the luminal surface with a small wire.
Each vessel underwent an equilibration period at an initial tension of 4 mN for arteries and 2
mN for veins for 1 hour [37]. Vessel viability was assessed using three consecutive stimulations
with 125 mM potassium physiological saline solution (KPSS) followed by a washout period.
Cumulative concentration-response curves for each vessel were then obtained for phenyleph-
rine (1x10-9 – 1x10-4 M) and 5-hydroxytryptamine (5HT) (1x10-9 – 1x10-4 M). All drugs were
dissolved in PSS. Following contraction with sufficient phenylephrine to produce 80% of the
KPSS response (3x 10−7 M), a cumulative concentration-response curvewas obtained for ace-
tylcholine (1x10-9 – 1x10-4 M).

Statistical Analysis

Data reported are mean ± SEM. Contractions are expressed as force per unit length (mN/mm)
and as a percentage of maximum KPSS-induced contraction, the maximal contraction (Emax)
is reported for each agonist. Relaxation is expressed as percentage of pre-contraction with
phenylephrine. Results from the two sections of each vessel type were averaged for further anal-
ysis. Sigmoid curveswere fitted to the cumulative concentration-response data, 4 parameter
logisticmodelling performed.Data were tested for normality using a Kolmogorov-Smirnov

Vascular Dysfunction in Horses
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test. Sensitivity to agonists is expressed as -log EC50 (pD2) for constrictors or -log IC50 for ace-
tylcholine. The curveswere analysed by 2-way ANOVA and post-hoc Tukey test. Comparisons
of the group means was performed using Student’s unpaired t-test or Mann-Whitney U test
following normality testing. Graphpad Prism 4 and SPSS were used for all statistical testing.
Significancewas defined at P<0.05.

Results

Animals

Six healthy horses, with no history of laminitis and 6 horses with chronic EL (4 with EMS and
2 with PPID) were included in the study. The healthy group consisted of 4 castrated males and
2 non-pregnant females. The EL group consisted of 3 castrated males and 3 non-pregnant
females. Horses in the EL group were not suffering from acute laminitis at the time of euthana-
sia. None of the animals had a history of glucocorticoidadministration in the previous month.
Clinical and biochemical characteristics are given in Table 1. Horses with EL had higher resting
serum insulin and triglyceride concentrations and high body condition scores (obesity) com-
pared with healthy horses.

Response of intact vessels from healthy horses to vasoconstrictors

Laminar arteries and veins and facial arteries from healthy horses contracted in response to
KPSS, phenylephrine and 5HT (Table 2, Figs 1 and 2). Laminar arteries produced a greater

Table 1. Clinical and biochemical characteristics of the study groups; healthy and those with endocrinopathic laminitis (EL).

Healthy EL P Value

Age (years) 19.1 ± 1.4 19.3 ± 1.4 0.46

Body Condition Score (/5) 2.0 ± 0.2 3.9 ± 0.2 <0.001

Fasting Insulin (mIU/L) 4.1 ± 1.4 57.1 ± 29.0 0.01

Glucose (mmol/L) 5.2 ± 0.2 4.9 ± 0.3 0.28

Triglycerides (mmol/L) 0.29 ± 0.02 0.54 ± 0.08 0.006

Cortisol (nmol/L) 150.6 ± 14.1 120.4 ± 12.3 0.35

ACTH (pg/mL) 27.6 ± 11.5 115.1 ± 54.3 0.001

Biochemical analyses were performed on fasted morning serum/plasma samples. Data are mean ± SEM. Following a Kolmogorov-Smirnov test for

normality, comparisons between groups were by Student’s t-test or Mann-Whitney U test.

doi:10.1371/journal.pone.0163815.t001

Table 2. Response of intact vessels from healthy horses and horses with endocrinopathic laminitis (EL) to vasoconstrictors.

Intact laminar arteries Intact laminar veins Intact facial skin arteries

Healthy EL Healthy EL Healthy EL

Number 6 6 6 6 6 6

KPSS Emax mN/mm 31.4 ± 5.7 43.7 ± 6.9 5.9 ± 1.9 7.0 ± 1.8 20.2 ± 2.9 18.6 ± 3.4

PE Emax mN/mm 49.8 ± 8.5 56.1 ± 8.7 6.4 ± 1.4 12.9 ± 2.1** 27.3 ± 5.7 17.1 ± 1.8

-Log EC50 (pD2) 6.4 ± 0.1 5.6 ± 0.2* 6.8 ± 0.1 5.7 ± 0.3* 6.2 ± 0.2 6.5 ± 0.4

5HT Emax mN/mm 34.2 ± 11.4 54.4 ± 8.8 8.1 ± 1.4 14.3 ± 2.1** 24.1 ± 5.5 27.8 ± 1.3

-Log EC50 (pD2) 6.5 ± 0.2 6.1 ± 0.5 7.3 ± 0.1 7.4 ± 0.2 6.9 ± 0.2 7.0 ± 0.1

Responses to high potassium saline (KPSS), phenylephrine (PE) and 5-hyroxytryptamine (5HT) are given as absolute values (Emax mN/mm). Sensitivity is

expressed as—Log EC50 (pD2). Data are mean ± SEM. Healthy v EL responses were compared by Student’s t-test or Mann Whitney U.

* denotes P<0.05 and

** denotes P<0.005 compared with healthy horses.

doi:10.1371/journal.pone.0163815.t002
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contraction than facial skin arteries which produced a much greater contraction than laminar
veins for all vasoconstrictors (Table 2). Laminar veins were more sensitive to 5HT than either
laminar arteries or facial skin arteries (P = 0.02), this was endothelium-dependent.

Response of intact vessels from healthy horses to acetylcholine

All intact vessels relaxed in response to acetylcholine (Table 3; Fig 3) with the biggest response
(as a percentage of phenylephrine pre-contraction) in laminar arteries (>>laminar veins =
facial skin arteries; P = 0.02). Maximal relaxation in response to acetylcholine in laminar arter-
ies was consistently greater than baseline tension (i.e.> 100% relaxation).

Removal of the endothelium from vessels of healthy horses

Removal of the endothelium abolished acetylcholine-induced relaxation in all vessels. Denud-
ing did not alter the magnitude of contraction in response to phenylephrine or 5HT; however,
the sensitivity of denuded laminar veins (but not laminar or facial skin arteries) to phenyleph-
rine (P = 0.004) and 5HT (P = 0.0004) was decreased (Table 4, Figs 4 and 5).

Fig 1. Cumulative concentration response curves to phenylephrine (PE) of intact [A] laminar arteries, [B] laminar veins

and [C] facial skin arteries from healthy horses (●, n = 6) and horses with endocrinopathic laminitis (○, n = 6). Data are

expressed as a percentage of maximal contraction in response to high potassium saline (KPSS). Data are mean ± SEM. Curves

were compared using two-way ANOVA. *P<0.05. The veins from horses with EL had larger maximal contractions in response to

PE compared to healthy horses.

doi:10.1371/journal.pone.0163815.g001

Fig 2. Cumulative concentration response curves to 5-hydroxytryptamine (5HT) of intact [A] laminar arteries, [B] laminar veins and [C] facial

skin arteries from healthy horses (●, n = 6) and horses with endocrinopathic laminitis (○, n = 6). Data are expressed as a percentage of maximal

contraction in response to high potassium saline (KPSS). Data are mean ± SEM. Curves were compared using two-way ANOVA. *P<0.05. The veins

from horses with EL had larger maximal contractions in response to 5HT compared to healthy horses.

doi:10.1371/journal.pone.0163815.g002
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Vascular function in healthy horses compared to those with

endocrinopathic laminitis

In comparison with healthy controls, acetylcholine-induced relaxation (Emax) was dramati-
cally reduced in all vessels from horses with EL (Table 3; Fig 2). In addition, contractile
responses (Emax mN/mm) to phenylephrine (P = 0.005) and 5HT (P = 0.0007) were increased
in laminar veins from horses with EL (Table 2, Figs 1 and 2). Sensitivity to phenylephrine was
reduced in laminar arteries (P = 0.006) and laminar veins (P = 0.009) from horses with EL
(Table 2, Figs 1 and 2), this was an endothelium-independent effect in laminar arteries but not
veins in which sensitivity was not significantly different when the veins were denuded.

Discussion

The work presented here demonstrates that horses with endocrinopathic laminitis (EL) have
vascular dysfunctionmanifest as blunting of endothelium-dependent vasodilation. This dys-
function is present in both the laminar vascular bed and distant facial skin arteries. In addition,
laminar veins of EL horses showed further dysfunctionwith increased contractile responses to
phenylephrine and 5HT, accompanied by a decrease in sensitivity to phenylephrine.
The vascular pathology associated with laminitis has been of interest for many years.

Although there are reports of vascular dysfunction following experimentally induced inflam-
matory laminitis [38] there are no data pertaining to vascular dysfunction, local or systemic, in

Table 3. Response of intact vessels from healthy horses and horses with endocrinopathic laminitis (EL) to acetylcholine following pre-contrac-

tion with phenylephrine.

Intact Laminar Arteries Intact Laminar Veins Intact Facial Skin Arteries

Healthy EL Healthy EL Healthy EL

Number 6 6 6 6 6 6

Acetylcholine Maximum % Relaxation 323.5 ± 94.1 90.8 ± 4.4* 129.4 ± 14.8 71.2 ± 4.1* 182.0 ± 40.7 91.4 ± 4.5*

-Log IC50 (pD2) 7.4 ± 0.3 7.9 ± 0.2 7.6 ± 0.2 7.2 ± 0.1 7.6 ± 0.2 8.2 ± 0.2

Maximal relaxation expressed as a percentage of initial contraction and sensitivity expressed as—Log EC50 (pD2) are shown. Data are mean ± SEM. Data

were compared by Student’s t-test or Mann Whitney U (healthy vs EL).

* P<0.05 and

** P<0.005 compared with healthy.

doi:10.1371/journal.pone.0163815.t003

Fig 3. Cumulative concentration response curves to acetylcholine (ACh) of intact [A] laminar arteries, [B] laminar veins and [C] facial skin

arteries from healthy horses (●, n = 6) and horses with endocrinopathic laminitis (○, n = 6). The horizontal line indicates baseline values prior to

contraction with phenylephrine. Data are expressed as a percentage of maximal contraction in response to high potassium saline (KPSS). Data are

mean ± SEM. Curves were compared using two-way ANOVA. *P<0.05, **P<0.005. Laminar arteries, veins and facial skin arteries of horses with EL

relaxed significantly less than those from healthy horses.

doi:10.1371/journal.pone.0163815.g003
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horses with EL, most likely due to the difficulties in obtaining samples from clinical cases. To
assess vasoconstrictor functionwe used phenylephrine, an alpha-adrenoceptor agonist which
produces stable and reliable concentration-dependent contractions of physiological relevance.
Moreover, in treatment of laminitis alpha-adrenoceptor antagonists (e.g. acepromazine) are
used clinically in an attempt to induce vasodilation [39]; phenylephrine is, therefore, also of
pharmacological relevance in this disease. All three vessel types contracted in response to phen-
ylephrine with both laminar and facial skin arteries having larger contractions than laminar
veins. 5HT was used as an alternative contractile agonist in this study and elicited reproducible
contractions of a similar magnitude to those induced by phenylephrine in all vessels. The
response of equine vessels to 5HT has been a source of interest as both large and small equine
veins are more sensitive to its effects than arteries [33, 40]. This has been proposed as a possible
contributing factor to venous dysfunction in inflammatory laminitis in which circulating 5HT
concentrations are elevated [38, 40], although elevated 5HT concentrations have not been
demonstrated in EL. This differential sensitivity was replicated in our study. This differential
sensitvity was endothelium-dependent consistent with other studies showing the response to
5HT is reliant on endothelial-derivednitric oxide [41]. Interestingly, while 5HT has been
found to be significantlymore potent in the larger palmer digital vessels compared to large

Table 4. Response of denuded vessels from healthy horses and horses with endocrinopathic laminitis (EL) to vasoconstrictors high potassium

saline (KPSS), phenylephrine (PE) and 5-hydroxytryptamine (5HT).

Denuded Laminar Arteries Denuded Laminar Veins Denuded Facial Skin Arteries

Healthy EL Healthy EL Healthy EL

Number 6 6 6 6 6 6

KPSS Emax mN/mm 28.2 ± 4.1 26.1 ± 8.5 4.9 ± 1.7 8.8 ± 1.6* 19.5 ± 1.4 17.5 ± 2.7

PE Emax mN/mm 31.7 ± 4.8 22.1 ± 3.2 5.3 ± 0.9 11.3 ± 1.4* 26.9 ± 14.4 21.0 ± 4.4

-Log EC50 (pD2) 6.4 ± 0.2 5.9 ± 0.7* 5.4 ± 0.3 5.9 ± 0.4 6.4 ± 0.3 6.5 ± 0.6

5HT Emax mN/mm 34.0 ± 3.8 23.7 ± 4.1 5.1 ± 1.9 10.4 ± 1.1* 29.7 ± 19.7 10.9 ± 3.5

-Log EC50 (pD2) 6.5 ± 0.1 6.4 ± 0.7 6.4 ± 0.1 6.0 ± 0.3 7.0 ± 0.5 6.9 ± 0.7

Responses are given as absolute values (Emax mN/mm). Sensitivity is expressed as—Log EC50 (pD2). Data are mean ± SEM. Data were compared by

Student’s t-test or Mann Whitney U (healthy vs EL)

* P<0.05.

doi:10.1371/journal.pone.0163815.t004

Fig 4. Cumulative concentration response curves to phenylephrine (PE) of denuded [A] laminar arteries, [B] laminar veins and [C] facial skin

arteries from healthy horses (●, n = 6) and horses with endocrinopathic laminitis (○, n = 6). Data are expressed as a percentage of maximal

contraction in response to high potassium saline (KPSS). Data are mean ± SEM. Curves were compared using two-way ANOVA. *P<0.05. There were

no significant differences between healthy horses and those with EL.

doi:10.1371/journal.pone.0163815.g004
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facial arteries [40] there was no difference in sensitivity to this agent between small laminar
arteries and small facial skin arteries.
Acetylcholine is commonly used in vascular function studies to induce endothelium-depen-

dent relaxation via nitric oxide release [42]. As in other species, acetylcholine-mediated relaxa-
tion was endothelium-dependent in all vessels in this study. In contrast to the only other report
of equine laminar vessel response to acetylcholine [43], laminar arteries in this study relaxed to
greater than 200% of baseline tension in healthy horses. This is an unusual response in an iso-
metric system, in which vessels do not normally develop tone unless stimulated, and is rarely
observed in rodent vessels [42]. Some resistance vessels such as cerebral arteries exhibit myo-
genic tone in isometric systems [44], contracting in response to initial stretching without the
addition of vasoconstrictors. The vessels in this study did not contract in response to applica-
tion of baseline tension, indicating that myogenic tone did not develop. However, their
response to acetylcholine implies that some degree of intrinsic tone is present in these vessels
prior to application of baseline tension [45]. Intrinsic tone is normally a pathological response
of vessels to high pressures; for example, in the context of pulmonary or renal hypertension
[45]. The development of intrinsic tone in disease is usually accounted for by alterations in
the mechanisms sensing or transducing a pressure stimulus, changes in shear wall stress or
impaired endothelial function [46]. It is possible that laminar vessels have intrinsic tone as a
normal physiological response to the much greater pressures they encounter than equivalent
vessels in other species (capillary pressure in the standing horse’s hoof is approximately 35-
50mmHg, compared to 20mmHg in the human foot and 15mmHg in the canine hind paw)
[47–49]. However, given that intrinsic tone appears also to be a feature of facial skin arteries it
is unlikely to be explained by elevated perfusion pressure and may be a species-specific finding.
It is important to note that, even though vessels from EL horses relaxed significantly less than
those from healthy horses, the arteries still relaxed by 100% whereas the mean relaxation of the
veins was only 70%. This most likely reflects endothelial dysfunction of the veins but, in the
arteries, a loss of intrinsic tone may also play a role.
Inflammatory laminitis, induced with administration of black walnut extract, is known to

result in failure of larger conduit vessels of the equine limb to adequately dilate in response to
acetylcholine but the mechanism is unknown [50]. These experimentalmodels are comparable
to sepsis and multi organ failure in humans in which endothelial cell dysfunction is an impor-
tant feature [51]. This is the first study to demonstrate similar vascular dysfunction in EL
though systemic hypertension has been reported in ponies with insulin resistance [52] but
whether this is due to vascular dysfunction is unknown. EL is associated with either EMS or

Fig 5. Cumulative concentration response curves to 5-hydroxytryptamine (5HT) of denuded [A] laminar arteries, [B] laminar veins and [C]

facial skin arteries from healthy horses (●, n = 6) and horses with endocrinopathic laminitis (○, n = 6). Data are expressed as a percentage of

maximal contraction in response to high potassium saline (KPSS). Data are mean ± SEM. Curves were compared using two-way ANOVA. *P<0.05.

There were no significant differences between healthy horses and those with EL.

doi:10.1371/journal.pone.0163815.g005
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PPID; these conditions have several features in common which may explain the evident vascu-
lar dysfunction. Both diseases are associated with insulin dysregulation, abnormal adiposity
and probable cortisol dysregulation [53].
In this study all of the horses with EL had insulin dysregulationmanifest as fasting hyperin-

sulinaemia. Hyperinsulinaemia can result in endothelial cell dysfunction, specifically blunting
vasodilatory responses, as well as endothelial resistance to insulin- induced enhancement of
vasodilation [54]. Insulin resistance results in a downregulation of the PI3kinase pathway with
a subsequent reduction in NO production whilst the compensatory hyperinsulinemia causes
excessive stimulation of the MAP Kinase pathway and production of ET-1 and reactive oxygen
species in humans [55]. Ex vivomodels of equine vessels incubated in high concentrations of
insulin have shown that a similar phenomenon may also occur in horses [56] and this patho-
physiological process may contribute to the endothelial dysfunction evident in this study.
The role of cortisol dysregulation in vascular function is less well defined as it is often diffi-

cult to distinguish the effects of hypercortisolaemia from the accompanying metabolic syn-
drome in humans. Human Cushing’s disease patients treated with surgery remain at high risk
of cardiovascular disease years after the hypercortisolaemia has abated, most probably due to
the persistence of features of metabolic syndrome [57]. However, human Cushing’s patients
also show increased insulin-stimulated endothelin release which is not a feature of metabolic
syndrome alone [58]. While EMS and PPID are not associated with hypercortisolaemia there is
evidence of peripheral cortisol dysfunction in chronic laminitis which deserves further study
[59]. Cortisol inhibits endothelial-dependent cholinergic vasodilation in humans most likely
through an inhibition of NO synthesis [17], reduces the bioavailability of NO in vessels [60],
inhibits tetrahydrobiopterin [61, 62], the cofactor necessary for maximal activity of nitric oxide
synthase and potentiates the effects of vasoconstrictors [18, 63].
Expanding adipose tissue adopts a pro-inflammatory phenotype accompanied by increased

production of reactive oxygen species. Obesity is associated with an uncoupling of eNOS, such
that it produces superoxide ion (O2-) rather than NO, an event known to precede the establish-
ment of other obesity co-morbidities [64]. A pro-inflammatory phenotype has been demon-
strated in horses with insulin resistance and obesity [65, 66] but it has yet to be ascertained
whether this is accompanied by dysregulation of NO.
Laminar veins showed more evidence of dysfunction in EL horses in this study compared

with laminar and facial skin arteries. Veins are rarely studied in rodent models of vascular dys-
function or in human disease but have been shown to have altered function in experimentally-
induced inflammatorymodels of laminitis in the horse [38, 67]. There are differences in the
mechanism of response to vasoconstrictors between laminar arteries and veins. For example
unlike arteries, laminar veins still contract in response to phenylephrine and 5HT when there
is no extracellular calcium present [68]. Such mechanistic differencesmay go some way to
explain the apparent preferential dysfunction of veins in disease. The venous return from the
hoof relies on adequate relaxation of the veins and the pump action of the hoof hitting the
ground [69]. Adequate venous return is essential to prevent elevation in capillary pressure and
oedema. Reduced relaxation of the veins in diseasemay be of equal, if not more, importance
than arterial dysfunction in the pathophysiology of EL and warrants further investigation.
It is important to note that the dysfunction identified in this study could be a cause or a con-

sequence of disease. Failure of the vessels within the hoof to adequately dilate will have signifi-
cant consequences, potentially reducing overall blood flow and reducing venous return. Such
abnormalities may lead to increased capillary pressure and oedema and hypoxia of the laminar
tissue. Equally systemic endothelial dysfunctionmay render these animals susceptible to other
vascular and microvascular abnormalities such as retinal vascular lesions [70] not previously
investigated in this population. Clinical vascularmarkers of endothelial dysfunction such as
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flowmediated dilatation may not be readily transferrable to equine medicine. However, plasma
biomarkers of endothelial dysfunction, such as asymmetrical dimethylarginine and oxidized
LDL [71], would be an invaluable clinical tool for determining laminitic risk and monitoring
response to treatment. It is plausible that abrogating endothelial dysfunctionmay be beneficial
in horses with EL in order to prevent or manage laminitis. Pharmacological interventions
aimed at restoring blood flow to the hoof by alpha adrenoceptor antagonism (acepromazine,
domperidone) or beta-adrenoceptor agonists (isoxsuprine hydrochloride) have been used clini-
cally with varying success [39, 72], possibly reflecting our limited understanding of vascular
dysfunction in laminitis. Given the high prevalence of this disorder and the clinical conse-
quences there is still an urgent unmet clinical need in this area of veterinarymedicine.
In conclusion, this study has shown endothelial dysfunction associated with EL affecting

both laminar vessels and distant facial skin arteries. The endotheliummay be a target for the
treatment or diagnosis of EL.

Acknowledgments

The work was conducted in the University /BHF Centre for Cardiovascular Sciences. The
authors are grateful to staff at the Royal (Dick) School of Veterinary Studies and the horse own-
ers who participated in this study.

Author Contributions

Conceptualization:RM JK PH BW.

Formal analysis:RM PH.

Funding acquisition: JK BW.

Investigation: RM PH.

Methodology:RM JK PH.

Project administration:PH.

Resources:PH JK.

Supervision:PH BW.

Validation: JK PH BW.

Visualization: RM.

Writing – original draft:RM PH JK.

Writing – review& editing: RM PH JK BW.

References
1. Wylie CE, Collins SN, Verheyen KLP, Richard Newton J. Frequency of equine laminitis: A systematic

review with quality appraisal of published evidence. Vet J. 2011; 189(3):248–56. doi: 10.1016/j.tvjl.

2011.04.014 PMID: 21665498

2. Karikoski NP, Horn I, McGowan TW, McGowan CM. The prevalence of endocrinopathic laminitis

among horses presented for laminitis at a first-opinion/referral equine hospital. Domest Anim Endocri-

nol. 2011; 41(3):111–7. doi: 10.1016/j.domaniend.2011.05.004 PMID: 21696910

3. Baldwin GI, Pollitt CC. Progression of Venographic Changes After Experimentally Induced Laminitis.

Veterinary Clinics of North America—Equine Practice. 2010; 26(1):135–40. doi: 10.1016/j.cveq.2009.

12.005 PMID: 20381742

Vascular Dysfunction in Horses

PLOS ONE | DOI:10.1371/journal.pone.0163815 September 29, 2016 10 / 14

http://dx.doi.org/10.1016/j.tvjl.2011.04.014
http://dx.doi.org/10.1016/j.tvjl.2011.04.014
http://www.ncbi.nlm.nih.gov/pubmed/21665498
http://dx.doi.org/10.1016/j.domaniend.2011.05.004
http://www.ncbi.nlm.nih.gov/pubmed/21696910
http://dx.doi.org/10.1016/j.cveq.2009.12.005
http://dx.doi.org/10.1016/j.cveq.2009.12.005
http://www.ncbi.nlm.nih.gov/pubmed/20381742


4. Ackerman N, Garner HE, Coffman JR, Clement JW. Angiographic appearance of the normal equine

foot and alterations in chronic laminitis. J Am Vet Med Assoc. 1975; 166(1):58–62. Epub 1975/01/01.

PMID: 1110201.

5. Hunt RJ, Wharton RE. Clinical Presentation, Diagnosis, and Prognosis of Chronic Laminitis in North

America. Veterinary Clinics of North America—Equine Practice. 2010; 26(1):141–53.doi: 10.1016/j.

cveq.2009.12.006 PMID: 20381743

6. Walther G, Obert P, Dutheil F, Chapier R, Lesourd B, Naughton G, et al. Metabolic Syndrome Individu-

als With and Without Type 2 Diabetes Mellitus Present Generalized Vascular Dysfunction: Cross-Sec-

tional Study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015. doi: 10.1161/ATVBAHA.114.

304591 PMID: 25657309

7. Iuchi T, Akaike M, Mitsui T, Ohshima Y, Shintani Y, Azuma H, et al. Glucocorticoid excess induces

superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circu-

lation Research. 2003; 92(1):81–7. doi: 10.1161/01.RES.0000050588.35034.3C PMID: 12522124

8. Faggiano A, Pivonello R, Spiezia S, De Martino MC, Filippella M, Di Somma C, et al. Cardiovascular

risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during

active disease and 1 year after disease remission. Journal of Clinical Endocrinology and Metabolism.

2003; 88(6):2527–33. doi: 10.1210/jc.2002-021558 PMID: 12788849

9. Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell Tissue Res. 2009;

335(1):191–203. doi: 10.1007/s00441-008-0678-5 PMID: 18797930

10. Walker BR, Soderberg S, Lindahl B, Olsson T. Independent effects of obesity and cortisol in predicting

cardiovascular risk factors in men and women. J Intern Med. 2000; 247(2):198–204. doi: 10.1046/j.

1365-2796.2000.00609.x PMID: 10692082

11. Brook RD, Bard RL, Glazewski L, Kehrer C, Bodary PF, Eitzman DL, et al. Effect of short-term weight

loss on the metabolic syndrome and conduit vascular endothelial function in overweight adults. Ameri-

can Journal of Cardiology. 2004; 93(8):1012–6. doi: 10.1016/j.amjcard.2004.01.009 PMID: 15081445

12. Balletshofer BM, Rittig K, Stock J, Lehn-Stefan A, Overkamp D, Dietz K, et al. Insulin resistant young

subjects at risk of accelerated atherosclerosis exhibit a marked reduction in peripheral endothelial

function early in life but not differences in intima-media thickness. Atherosclerosis. 2003; 171(2):303–

9. doi: 10.1016/j.atherosclerosis.2003.08.013 PMID: 14644401

13. Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, et al. Insulin causes endothelial dysfunc-

tion in humans: Sites and mechanisms. Circulation. 2002; 105(5):576–82. doi: 10.1161/hc0502.

103333 PMID: 11827922

14. Arcaro G, Zamboni M, Rossi L, Turcato E, Covi G, Armellini F, et al. Body fat distribution predicts the

degree of endothelial dysfunction in uncomplicated obesity. International Journal of Obesity. 1999; 23

(9):936–42. doi: 10.1038/sj.ijo.0801022 PMID: 10490799

15. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, et al. Reduction of inflammatory

cytokine concentrations and improvement of endothelial functions in obese women after weight loss

over one year. Circulation. 2002; 105(7):804–9. doi: 10.1161/hc0702.104279 PMID: 11854119
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