10 research outputs found

    A phase I pharmacodynamic study of GTI-2040, an antisense oligonucleotide against ribonuclotide reductase, in acute leukemias: a California Cancer Consortium study

    No full text
    We performed a phase I study of GTI-2040, an antisense oligonucleotide against ribonucleotide reductase mRNA, on a novel dosing schedule of days 1-4 and 15-18 by continuous infusion to examine efficacy and tolerability in patients with leukemia. A dose of 11 mg/kg/d was safely reached. Dose limiting toxicities at the higher levels included elevated troponin I and liver function enzymes. There were no objective responses to GTI-2040 in this study; 7/24 patients were able to complete the predetermined 3 infusion cycles. Pharmacokinetic and pharmacodynamic studies were performed, indicating a trend towards increasing intracellular drug levels and decreasing RRM2 gene expression with increasing doses. This dose schedule may be considered if appropriate combinations are identified in preclinical studies

    Protein Phosphatase 1 Regulatory Subunit 1A in Ewing Sarcoma Tumorigenesis and Metastasis

    No full text
    Protein phosphatase inhibitors are often considered as tumor promoters. Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is a potent protein phosphatase 1 (PP1) inhibitor; however, its role in tumor development is largely undefined. Here we characterize, for the first time, the functions of PPP1R1A in Ewing sarcoma (ES) pathogenesis. We found that PPP1R1A is one of the top ranked target genes of EWS/FLI, the master regulator of ES, and is upregulated by EWS/FLI via a GGAA microsatellite enhancer element. Depletion of PPP1R1A resulted in a significant decrease in oncogenic transformation and cell migration in vitro as well as xenograft tumor growth and metastasis in an orthotopic mouse model. RNA-sequencing and functional annotation analyses revealed that PPP1R1A regulates genes associated with various cellular functions including cell junction, adhesion and neurogenesis. Interestingly, we found a significant overlap of PPP1R1A-regulated gene set with that of ZEB2 and EWS, which regulates metastasis and neuronal differentiation in ES, respectively. Further studies for characterization of the molecular mechanisms revealed that activation of PPP1R1A by PKA phosphorylation at Thr35, and subsequent PP1 binding and inhibition, was required for PPP1R1A-mediated tumorigenesis and metastasis, likely by increasing the phosphorylation levels of various PP1 substrates. Furthermore, we found that a PKA inhibitor impaired ES cell proliferation, tumor growth and metastasis, which was rescued by the constitutively active PPP1R1A. Together, these results offered new insights into the role and mechanism of PPP1R1A in tumor development and identified an important kinase and phosphatase pathway, PKA/PPP1R1A/PP1, in ES pathogenesis. Our findings strongly suggest a potential therapeutic value of inhibition of the PKA/PPP1R1A/PP1 pathway in the treatment of primary and metastatic ES

    Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies

    No full text

    What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery

    No full text
    corecore