1,521 research outputs found

    New Talent Signals: Shiny New Objects or a Brave New World?

    Get PDF
    Almost 20 years after McKinsey introduced the idea of a war for talent, technology is disrupting the talent identification industry. From smartphone profiling apps to workplace big data, the digital revolution has produced a wide range of new tools for making quick and cheap inferences about human potential and predicting future work performance. However, academic industrial–organizational (I-O) psychologists appear to be mostly spectators. Indeed, there is little scientific research on innovative assessment methods, leaving human resources (HR) practitioners with no credible evidence to evaluate the utility of such tools. To this end, this article provides an overview of new talent identification tools, using traditional workplace assessment methods as the organizing framework for classifying and evaluating new tools, which are largely technologically enhanced versions of traditional methods. We highlight some opportunities and challenges for I-O psychology practitioners interested in exploring and improving these innovations

    Is early center-based child care associated with tantrums and unmanageable behavior over time up to school entry?

    Get PDF
    Background. Existing research suggests that there is a relationship between greater exposure to center-based child care and child behavioral problems though the mechanism for the impact is unclear. However the measure used to document child care has usually been average hours, which may be particularly unreliable in the early months when fewer children are in center care. In addition individual trajectories for behavior difficulties have not been studied. Objective. The purpose of the current study was to examine whether the extent of exposure to center-based child care before two years predicted the trajectory of children’s difficult behavior (i.e., tantrums and unmanageable behavior) from 30 to 51 months controlling for child and maternal characteristics. Method. Data were drawn from UK-based Families, Children and Child Care (FCCC) study (n=1201). Individual growth models were fitted to test the relation between early center-based child care experiences and subsequent difficult behavior. Results. Children with more exposure to center-based care before two had less difficult behavior at 30 months, but more increase over time. Initial levels were predicted by higher difficult temperament and lower verbal ability. Higher difficult temperament and lower family socio-economic status predicted its change over time. Conclusion. Findings suggest that early exposure to center-based care before two years old is a risk factor for subsequent behavior problems especially when children have a longer period of exposure. A possible explanatory process is that child coping strategies to manage frustration are less well developed in a group context, especially when they lag behind in expressive language

    Pathway-Specific Polygenic Risk Scores as Predictors of Amyloid-beta Deposition and Cognitive Function in a Sample at Increased Risk for Alzheimer's Disease

    Get PDF
    Polygenic risk scores (PRSs) have been used to combine the effects of variants with small effects identified by genome-wide association studies. We explore the potential for using pathway-specific PRSs as predictors of early changes in Alzheimer’s disease (AD)-related biomarkers and cognitive function. Participants were from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of adults who were cognitively asymptomatic at enrollment and enriched for a parental history of AD. Using genes associated with AD in the International Genomics of Alzheimer’s Project’s meta-analysis, we identified clusters of genes that grouped into pathways involved in amyloid-β (Aβ) deposition and neurodegeneration: Aβ clearance, cholesterol metabolism, and immune response. Weighted pathway-specific and overall PRSs were developed and compared to APOE alone. Mixed models were used to assess whether each PRS was associated with cognition in 1,200 individuals, cerebral Aβ deposition measured using amyloid ligand (Pittsburgh compound B) positron emission imaging in 168 individuals, and cerebrospinal fluid Aβ deposition, neurodegeneration, and tau pathology in 111 individuals, with replication performed in an independent sample. We found that PRSs including APOE appeared to be driven by the inclusion of APOE, suggesting that the pathway-specific PRSs used here were not more predictive than an overall PRS or APOE alone. However, pathway-specific PRSs could prove to be useful as more knowledge is gained on the genetic variants involved in specific biological pathways of AD

    Resident Memory T Cells (TRM) Are Abundant in Human Lung: Diversity, Function, and Antigen Specificity

    Get PDF
    Recent studies have shown that tissue resident memory T cells (TRM) are critical to antiviral host defense in peripheral tissues. This new appreciation of TRM that reside in epithelial tissues and mediate host defense has been studied most extensively in skin: adult human skin contains large numbers of functional TRM that express skin specific markers. Indeed, more than twice as many T cells reside in skin as in peripheral blood. This T cell population has a diverse T cell receptor repertoire, and can produce a broad array of cytokines. More recently, we have begun to examine other epithelial tissues for the presence of resident T cells. In the present study, we asked whether analogous populations of resident T cells could be found in human lung. We were able to demonstrate abundant resident T cells in human lung-more than 10 billion T cells were present. Lung T cells were largely of the effector memory T cell (TEM) phenotype, though small numbers of central memory T cells (TCM) and T regulatory cells (Treg) could be identified. Lung T cells had a diverse T cell receptor repertoire and subsets produced IL-17, IL-4, IFNγ, as well as TNFα. A significant number of lung TRM CD4+Th cells produced more than one cytokine, identifying them as “multifunctional” Th1 type cells. Finally, lung TRM, but not TRM resident to skin or T cells from blood, proliferated in response to influenza virus. This work suggests that normal human lung contains large numbers of TRM cells, and these cells are poised to respond to recall antigens previously encountered through lung mucosa. This population of T cells may contribute to the pathogenesis of asthma and other T cell mediated lung diseases

    A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Graphical models (e.g., Bayesian networks) have been used frequently to describe complex interaction patterns and dependent structures among genes and other phenotypes. Estimation of such networks has been a challenging problem when the genes considered greatly outnumber the samples, and the situation is exacerbated when one wishes to consider the impact of polymorphisms (SNPs) in genes.</p> <p>Results</p> <p>Here we describe a multistep approach to infer a gene-SNP network from gene expression and genotyped SNP data. Our approach is based on 1) construction of a graphical Gaussian model (GGM) based on small sample estimation of partial correlation and false-discovery rate multiple testing; 2) extraction of a subnetwork of genes directly linked to a target candidate gene of interest; 3) identification of cis-acting regulatory variants for the genes composing the subnetwork; and 4) evaluating the identified cis-acting variants for trans-acting regulatory effects of the target candidate gene. This approach identifies significant gene-gene and gene-SNP associations not solely on the basis of gene co-expression but rather through whole-network modeling. We demonstrate the method by building two complex gene-SNP networks around Interferon Receptor 12B2 (IL12RB2) and Interleukin 1B (IL1B), two biologic candidates in asthma pathogenesis, using 534,290 genotyped variants and gene expression data on 22,177 genes from total RNA derived from peripheral blood CD4+ lymphocytes from 154 asthmatics.</p> <p>Conclusion</p> <p>Our results suggest that graphical models based on integrative genomic data are computationally efficient, work well with small samples, and can describe complex interactions among genes and polymorphisms that could not be identified by pair-wise association testing.</p

    The kinetics of lactate production and removal during whole-body exercise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed.</p> <p>Results</p> <p>The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination.</p> <p>Conclusions</p> <p>Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted.</p

    Increased retention of functional fusions to toxic genes in new two-hybrid libraries of the E. coli strain MG1655 and B. subtilis strain 168 genomes, prepared without passaging through E. coli

    Get PDF
    BACKGROUND: Cloning of genes in expression libraries, such as the yeast two-hybrid system (Y2H), is based on the assumption that the loss of target genes is minimal, or at worst, managable. However, the expression of genes or gene fragments that are capable of interacting with E. coli or yeast gene products in these systems has been shown to be growth inhibitory, and therefore these clones are underrepresented (or completely lost) in the amplified library. RESULTS: Analysis of candidate genes as Y2H fusion constructs has shown that, while stable in E. coli and yeast for genetic studies, they are rapidly lost in growth conditions for genomic libraries. This includes the rapid loss of a fragment of the E. coli cell division gene ftsZ which encodes the binding site for ZipA and FtsA. Expression of this clone causes slower growth in E. coli. This clone is also rapidly lost in yeast, when expressed from a GAL1 promoter, relative to a vector control, but is stable when the promoter is repressed. We have demonstrated in this report that the construction of libraries for the E. coli and B. subtilis genomes without passaging through E. coli is practical, but the number of transformants is less than for libraries cloned using E. coli as a host. Analysis of several clones in the libraries that are strongly growth inhibitory in E. coli include genes for many essential cellular processes, such as transcription, translation, cell division, and transport. CONCLUSION: Expression of Y2H clones capable of interacting with E. coli and yeast targets are rapidly lost, causing a loss of complexity. The strategy for preparing Y2H libraries described here allows the retention of genes that are toxic when inappropriately expressed in E. coli, or yeast, including many genes that represent potential antibacterial targets. While these methods are generally applicable to the generation of Y2H libraries from any source, including mammalian and plant genomes, the potential of functional clones interacting with host proteins to inhibit growth would make this approach most relevant for the study of prokaryotic genomes
    corecore