22 research outputs found

    Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla

    Get PDF
    Background: Pancreatic cancer, including cancer of the ampulla of Vater and bile duct, is very aggressive and has a poor five year survival rate; improved methods of patient stratification are required. Methods: We assessed the expression of calpain-1, calpain-2 and calpastatin in two patient cohorts using immunohistochemistry on tissue microarrays. The first cohort was composed of 68 pancreatic adenocarcinomas and the second cohort was composed of 120 cancers of the bile duct and ampulla. Results: In bile duct and ampullary carcinomas an association was observed between cytoplasmic calpastatin expression and patient age (P = 0.036), and between nuclear calpastatin expression and increased tumour stage (P = 0.026) and the presence of vascular invasion (P = 0.043). In pancreatic cancer, high calpain-2 expression was significantly associated with improved overall survival (P = 0.036), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.342; 95% confidence interva l = 0.157-0.741; P = 0.007). In cancers of the bile duct and ampulla, low cytoplasmic expression of calpastatin was significantly associated with poor overall survival (P = 0.012), which remained significant in multivariate Cox-regression analysis (hazard ratio = 0.595; 95% confidence interval = 0.365-0.968; P = 0.037). Conclusion: The results suggest that calpain-2 and calpastatin expression is important in pancreatic cancers, influencing disease progression. The findings of this study warrant a larger follow-up study. Keywords: Calpain, Calpastatin, Pancreas, Ampulla, Bile duct, Cance

    Micro-CT imaging reveals<i> Mekk3 </i>heterozygosity prevents cerebral cavernous malformations in <i>Ccm2</i>-deficient mice

    Get PDF
    Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. However, the full value of these animal models is limited by the lack of an accurate and quantitative method to assess lesion burden and progression. In the present study we have established a refined and detailed contrast enhanced X-ray micro-CT method to measure CCM lesion burden in mouse brains. As this study utilized a voxel dimension of 9.5μm (leading to a minimum feature size of approximately 25μm), it is therefore sufficient to measure CCM lesion volume and number globally and accurately, and provide high-resolution 3-D mapping of CCM lesions in mouse brains. Using this method, we found loss of Ccm1 or Ccm2 in neonatal endothelium confers CCM lesions in the mouse hindbrain with similar total volume and number. This quantitative approach also demonstrated a rescue of CCM lesions with simultaneous deletion of one allele of Mekk3. This method would enhance the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases

    Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression

    Get PDF
    Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement

    Stanniocalcin-1 Regulates Re-Epithelialization in Human Keratinocytes

    Get PDF
    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca2+]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca2+]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca2+]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing

    v-SRC'S hold over actin and cell adhesions

    No full text
    The oncoprotein v-Src and its cellular homologue (c-Src) are tyrosine kinases that modulate the actin cytoskeleton and cell adhesions. Through the concerted action of their protein-interaction and kinase domains, they are targeted to cell–matrix integrin adhesions or cadherin-dependent junctions between epithelial cells, where they phosphorylate substrates that induce adhesion turnover and actin re-modelling. Recent experiments have defined some of the key targets and effector pathways that mediate the pleiotropic oncogenic effects of v-Src
    corecore