40 research outputs found

    First Results from the AMoRE-Pilot neutrinoless double beta decay experiment

    Get PDF
    The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0νββ\nu\beta\beta) of 100^{100}Mo with \sim100 kg of 100^{100}Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from 48^{48}Ca-depleted calcium and 100^{100}Mo-enriched molybdenum (48depl^{48\textrm{depl}}Ca100^{100}MoO4_4). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot 0νββ0\nu\beta\beta search with a 111 kg\cdotd live exposure of 48depl^{48\textrm{depl}}Ca100^{100}MoO4_4 crystals. No evidence for 0νββ0\nu\beta\beta decay of 100^{100}Mo is found, and a upper limit is set for the half-life of 0νββ\nu\beta\beta of 100^{100}Mo of T1/20ν>9.5×1022T^{0\nu}_{1/2} > 9.5\times10^{22} y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range mββ(1.22.1)\langle m_{\beta\beta}\rangle\le(1.2-2.1) eV

    Macroevolution

    No full text

    The Coal Farms of the Late Paleozoic

    No full text
    The assembly of the supercontinent Pangea resulted in a paleoequatorial region known as Euramerica, a northern mid-to-high latitude region called Angara, and a southern high paleolatitudinal region named Gondwana. Forested peat swamps, extending over hundreds of thousands of square kilometers, grew across this supercontinent during the Mississippian, Pennsylvanian, and Permian in response to changes in global climate. The plants that accumulated as peat do not belong to the plant groups prominent across today’s landscapes. Rather, the plant groups of the Late Paleozoic that are responsible for most of the biomass in these swamps belong to the fern and fern allies: club mosses, horsetails, and true ferns.  Gymnosperms of various systematic affinity play a subdominant role in these swamps, and these plants were more common outside of wetland settings. It is not until the Permian when these seed-bearing plants become more dominant. Due to tectonic activity associated with assembling the supercontinent, including earthquakes and volcanic ashfall, a number of these forests were buried in their growth positions. These instants in time, often referred to as T0 assemblages, provide insight into the paleoecological relationships that operated therein. Details of T0 localities through the Late Paleozoic demonstrate that the plants, and plant communities, of the coal forests are non-analogs to our modern world. Analysis of changing vegetational patterns from the Mississippian into the Permian documents the response of landscapes to overall changes in Earth Systems under icehouse to hothouse conditions
    corecore