17 research outputs found

    Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    Get PDF
    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish

    Health, Social Justice & Access to Learning

    No full text
    The Faculty of Health's Professor Rachael Dixey delivered her inaugural lecture in the iconic Rose Bowl. The lecture 'Health, Social Justice and Access to Learning' considered the relationships globally between health inequalities and education, exploring ideas of education as liberatory and empowering, and consequently how this impacts on the politics of health. Professor Dixey is the head of Health Promotion at Leeds Met. She has a lifelong interest in Africa, doing PhD research in the 1970s on access to primary schooling in Botswana. Inspired by the politics of health inequalities, Rachael is committed to improving health globally

    Application of Surface Roughness Analysis on Micro–Computed Tomographic Images of Bone Erosion: Examples Using a Rodent Model of Rheumatoid Arthritis

    No full text
    Quantifying the bone erosion in preclinical models of rheumatoid arthritis is valuable for the evaluation of drug treatments. This study introduces a three-dimensional method for bone surface roughness measurement from micro–computed tomographic data obtained from rats subjected to collagen-induced arthritis (CIA), in which the degree of bone erosion is related to the severity and the duration of the disease. In two studies of rat CIA, the surface roughness of the talus bone following 21 days of disease increased 559% and 486% from the control group. At 41 days following disease induction, the roughness of the bone surface increased 857% above baseline. The roughness of the control samples was similar from each study (less than 4% different), demonstrating the robustness of the algorithm. Treatment with methotrexate at 0.1 mg/kg daily demonstrated significant protection from bone erosion, whereas the 0.05 mg/kg daily dose was not efficacious (98% versus 22% inhibition of roughness-measured bone erosion). The main advantage of such an algorithm is demonstrated in the preclinical drug study of rat CIA with methotrexate treatment, indicating the immediate utility of this approach in drug development studies
    corecore