51 research outputs found
The microwave background temperature at the redshift of 2.33771
The Cosmic Microwave Background radiation is a fundamental prediction of Hot
Big Bang cosmology. The temperature of its black-body spectrum has been
measured at the present time, = 2.726 0.010 K, and is
predicted to have been higher in the past. At earlier time, the temperature can
be measured, in principle, using the excitation of atomic fine structure levels
by the radiation field. All previous measurements however give only upper
limits as they assume that no other significant source of excitation is
present. Here we report the detection of absorption from the first {\sl and}
second fine-structure levels of neutral carbon atoms in an isolated remote
cloud at a redshift of 2.33771. In addition, the unusual detection of molecular
hydrogen in several rotational levels and the presence of ionized carbon in its
excited fine structure level make the absorption system unique to constrain,
directly from observation, the different excitation processes at play. It is
shown for the first time that the cosmic radiation was warmer in the past. We
find 6.0 < T_{\rm CMBR} < 14 K at z = 2.33771 when 9.1 K is expected in the Hot
Big Bang cosmology.Comment: 20 pages, 5 figures, accepted for publication in Nature, Press
embargo until 1900 hrs London time (GMT) on 20 Dec 200
Origin of the Biologically Important Elements
The chemical elements most widely distributed in terrestrial living creatures are the ones (apart from inert helium and neon) that are commonest in the Universe--hydrogen, oxygen, carbon, and nitrogen. A chemically different Universe would clearly have different biology, if any. We explore here the nuclear processes in stars, the early Universe, and elsewhere that have produced these common elements, and, while we are at it, also encounter the production of lithium, gold, uranium, and other elements of sociological, if not biological, importance. The relevant processes are, for the most part, well understood. Much less well understood is the overall history of chemical evolution of the Galaxy, from pure hydrogen and helium to the mix of elements we see today. One implication is that we cannot do a very good job of estimating how many stars and which ones might be orbited by habitable planets
The establishment of the Standard Cosmological Model through observations
Over the last decades, observations with increasing quality have
revolutionized our understanding of the general properties of the Universe.
Questions posed for millenia by mankind about the origin, evolution and
structure of the cosmos have found an answer. This has been possible mainly
thanks to observations of the Cosmic Microwave Background, of the large-scale
distribution of matter structure in the local Universe, and of type Ia
supernovae that have revealed the accelerated expansion of the Universe. All
these observations have successfully converged into the so-called "concordance
model". In spite of all these observational successes, there are still some
important open problems, the most obvious of which are what generated the
initial matter inhomogeneities that led to the structure observable in today's
Universe, and what is the nature of dark matter, and of the dark energy that
drives the accelerated expansion. In this chapter I will expand on the previous
aspects. I will present a general description of the Standard Cosmological
Model of the Universe, with special emphasis on the most recent observations
that have us allowed to consolidate this model. I will also discuss the
shortfalls of this model, its most pressing open questions, and will briefly
describe the observational programmes that are being planned to tackle these
issues.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern
Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka;
publisher Springer Nature) funded by the European Union Erasmus+ Strategic
Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556
Gravitational-wave research as an emerging field in the Max Planck Society. The long roots of GEO600 and of the Albert Einstein Institute
On the occasion of the 50th anniversary since the beginning of the search for
gravitational waves at the Max Planck Society, and in coincidence with the 25th
anniversary of the foundation of the Albert Einstein Institute, we explore the
interplay between the renaissance of general relativity and the advent of
relativistic astrophysics following the German early involvement in
gravitational-wave research, to the point when gravitational-wave detection
became established by the appearance of full-scale detectors and international
collaborations. On the background of the spectacular astrophysical discoveries
of the 1960s and the growing role of relativistic astrophysics, Ludwig Biermann
and his collaborators at the Max Planck Institute for Astrophysics in Munich
became deeply involved in research related to such new horizons. At the end of
the 1960s, Joseph Weber's announcements claiming detection of gravitational
waves sparked the decisive entry of this group into the field, in parallel with
the appointment of the renowned relativist Juergen Ehlers. The Munich area
group of Max Planck institutes provided the fertile ground for acquiring a
leading position in the 1970s, facilitating the experimental transition from
resonant bars towards laser interferometry and its innovation at increasingly
large scales, eventually moving to a dedicated site in Hannover in the early
1990s. The Hannover group emphasized perfecting experimental systems at pilot
scales, and never developed a full-sized detector, rather joining the LIGO
Scientific Collaboration at the end of the century. In parallel, the Max Planck
Institute for Gravitational Physics (Albert Einstein Institute) had been
founded in Potsdam, and both sites, in Hannover and Potsdam, became a unified
entity in the early 2000s and were central contributors to the first detection
of gravitational waves in 2015.Comment: 94 pages. Enlarged version including new results from further
archival research. A previous version appears as a chapter in the volume The
Renaissance of General Relativity in Context, edited by A. Blum, R. Lalli and
J. Renn (Boston: Birkhauser, 2020
- …
