80 research outputs found
Superluminal Signals: Causal Loop Paradoxes Revisited
Recent results demonstrating superluminal group velocities and tachyonic
dispersion relations reopen the question of superluminal signals and causal
loop paradoxes. The sense in which superluminal signals are permitted is
explained in terms of pulse reshaping, and the self-consistent behavior which
prevents causal loop paradoxes is illustrated by an explicit example.Comment: 6 pages, 3 figure
Superoscillations and tunneling times
It is proposed that superoscillations play an important role in the
interferences which give rise to superluminal effects. To exemplify that, we
consider a toy model which allows for a wave packet to travel, in zero time and
negligible distortion a distance arbitrarily larger than the width of the wave
packet. The peak is shown to result from a superoscillatory superposition at
the tail. Similar reasoning applies to the dwell time.Comment: 12 page
Poynting vector, energy density and energy velocity in anomalous dispersion medium
The Poynting vector, energy density and energy velocity of light pulses
propagating in anomalous dispersion medium (used in WKD-like experiments) are
calculated. Results show that a negative energy density in the medium
propagates along opposite of incident direction with such a velocity similar to
the negative group velocity while the direction of the Poynting vector is
positive. In other words, one might say that a positive energy density in the
medium would propagate along the positive direction with a speed having
approximately the absolute valueof the group velocity. We further point out
that neither energy velocity nor group velocity is a good concept to describe
the propagation process of light pulse inside the medium in WKD experiment
owing to the strong accumulation and dissipation effects.Comment: 6 page
Frequency down conversion through Bose condensation of light
We propose an experimental set up allowing to convert an input light of
wavelengths about into an output light of a lower frequency. The
basic principle of operating relies on the nonlinear optical properties
exhibited by a microcavity filled with glass. The light inside this material
behaves like a 2D interacting Bose gas susceptible to thermalise and create a
quasi-condensate. Extension of this setup to a photonic bandgap material (fiber
grating) allows the light to behave like a 3D Bose gas leading, after
thermalisation, to the formation of a Bose condensate. Theoretical estimations
show that a conversion of into is achieved with an input
pulse of about with a peak power of , using a fiber grating
containing an integrated cavity of size about .Comment: 4 pages, 1 figure
Superluminal optical pulse propagation in nonlinear coherent media
The propagation of light-pulse with negative group-velocity in a nonlinear
medium is studied theoretically. We show that the necessary conditions for
these effects to be observable are realized in a three-level -system
interacting with a linearly polarized laser beam in the presence of a static
magnetic field. In low power regime, when all other nonlinear processes are
negligible, the light-induced Zeeman coherence cancels the resonant absorption
of the medium almost completely, but preserves the dispersion anomalous and
very high. As a result, a superluminal light pulse propagation can be observed
in the sense that the peak of the transmitted pulse exits the medium before the
peak of the incident pulse enters. There is no violation of causality and
energy conservation. Moreover, the superluminal effects are prominently
manifested in the reshaping of pulse, which is caused by the
intensity-dependent pulse velocity. Unlike the shock wave formation in a
nonlinear medium with normal dispersion, here, the self-steepening of the pulse
trailing edge takes place due to the fact that the more intense parts of the
pulse travel slower. The predicted effect can be easily observed in the well
known schemes employed for studying of nonlinear magneto-optical rotation. The
upper bound of sample length is found from the criterion that the pulse
self-steepening and group-advance time are observable without pulse distortion
caused by the group-velocity dispersion.Comment: 16 pages, 7 figure
Experimental observation of nonclassical effects on single-photon detection rates
It is often asserted that quantum effects can be observed in coincidence
detection rates or other correlations, but never in the rate of single-photon
detection. We observe nonclassical interference in a singles rate, thanks to
the intrinsic nonlinearity of photon counters. This is due to a dependence of
the effective detection efficiency on the quantum statistics of the light beam.
Such measurements of detector response to photon pairs promise to shed light on
the microscopic aspects of silicon photodetectors, and on general issues of
quantum measurement and decoherence.Comment: 8 pages, 4 figure
Multibarrier tunneling
We study the tunneling through an arbitrary number of finite rectangular
opaque barriers and generalize earlier results by showing that the total
tunneling phase time depends neither on the barrier thickness nor on the
inter-barrier separation. We also predict two novel peculiar features of the
system considered, namely the independence of the transit time (for non
resonant tunneling) and the resonant frequency on the number of barriers
crossed, which can be directly tested in photonic experiments. A thorough
analysis of the role played by inter-barrier multiple reflections and a
physical interpretation of the results obtained is reported, showing that
multibarrier tunneling is a highly non-local phenomenon.Comment: RevTex, 7 pages, 1 eps figur
A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation
A thought experiment is proposed to demonstrate the existence of a
gravitational, vector Aharonov-Bohm effect. A connection is made between the
gravitational, vector Aharonov-Bohm effect and the principle of local gauge
invariance for nonrelativistic quantum matter interacting with weak
gravitational fields. The compensating vector fields that are necessitated by
this local gauge principle are shown to be incorporated by the DeWitt minimal
coupling rule. The nonrelativistic Hamiltonian for weak, time-independent
fields interacting with quantum matter is then extended to time-dependent
fields, and applied to problem of the interaction of radiation with
macroscopically coherent quantum systems, including the problem of
gravitational radiation interacting with superconductors. But first we examine
the interaction of EM radiation with superconductors in a parametric oscillator
consisting of a superconducting wire placed at the center of a high Q
superconducting cavity driven by pump microwaves. We find that the threshold
for parametric oscillation for EM microwave generation is much lower for the
separated configuration than the unseparated one, which then leads to an
observable dynamical Casimir effect. We speculate that a separated parametric
oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012
Cooperative Ring Exchange and Quantum Melting of Vortex Lattices in Atomic Bose-Einstein Condensates
Cooperative ring-exchange is suggested as a mechanism of quantum melting of
vortex lattices in a rapidly-rotating quasi two dimensional atomic
Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al.
[Phys. Rev. Lett. {\bf 56}, 873 (1986)] for the fractional quantized Hall
effect, we calculate the condition for quantum melting instability by
considering large-correlated ring exchanges in a two-dimensional Wigner crystal
of vortices in a strong `pseudomagnetic field' generated by the background
superfluid Bose particles. BEC may be profitably used to address issues of
quantum melting of a pristine Wigner solid devoid of complications of real
solids.Comment: 7 pages, 1 figure, to appear in Physical Review
- …