1,403 research outputs found

    The Soviet military-economic effort during the second five-year plan (1933-1937)

    Get PDF
    In our paper we aim to show the changing economic significance of defence outlays in the period of the second five-year plan (1933-7).1 This period emerges as a time of transition. Rapid rearmament had been begun during the first five-year plan (1928-32), but from a very low base. In terms of the rising volume of activity, the following period was less hectic. However, it was a period of exceptionally rapid change in military technology and the technological level of defence industry products. It was followed by a third period (the third five-year plan of 1938-42, interrupted by war) in which the pace of rearmament was again exceptionally rapid and from a much higher initial base than before. Moreover the renewed acceleration of defence mobilisation began in 1936, when the second five-year plan was still under way. Central to our conventional picture of the Soviet economy in the second fiveyear plan are what Naum Jasny called the ‘three good years’ of 1934-6. These were years of good harvests, rapidly rising production, de-rationing of consumer markets, and rising wages and farm incomes. For the defence sector, in contrast, these emerge as years of struggle and tribulation

    Secondary tropical forests recover dung beetle functional diversity and trait composition

    Get PDF
    Secondary forests dominate some human‐modified tropical biomes, and this is expected to increase via both abandonment of marginal agricultural land as well as forest and landscape restoration programmes. A key question is whether promoting the recovery and protection of secondary tropical forests will return invertebrate functional diversity and associated functional traits. Dung beetles are ideal for assessing functional diversity as they play vital roles in several ecosystem functions, including seed dispersal, nutrient cycling and bioturbation. We examined how taxonomic and functional diversity, and the functional trait composition of native dung beetle species recovers in naturally regenerating secondary forests in comparison to both cattle pastures and primary forest in the Colombian Choco‐Andes, a global hotspot of threatened biodiversity. Using a space‐for‐time approach, we found that taxonomic and functional diversity recovered to levels comparable to primary forest within approximately 30 years of secondary forest regrowth. Functional richness and FD, measures of the diversity of traits present in a community, were similar in secondary and primary forest, but significantly lower in pasture. Rolling dung beetle species were positively associated with forest habitats, particularly primary, while dwelling species were more common in pasture. Thus, the functional trait composition of secondary forests was more similar to primary forest than to pasture. The ability of secondary forests to rapidly accumulate primary‐forest dung beetle functional diversity, and a representative suite of functional traits, provides an opportunity to protect biodiversity and ecosystem functioning, especially in regions where marginal agricultural land allows cost‐effective conservation actions

    Asymptotics for the minimum covariance determinant estimator

    Get PDF
    Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown for the MCD subset computed from the population distribution

    Crop nutrition and the response to clay amendment of sands

    Get PDF
    Clay amendment of sands using clay-rich subsoils has occurred on over 160,000 ha in southern Australia, primarily to ameliorate water repellence. The implications of clay amendment for crop nutrition have not been examined, nor has there been much consideration given to the variation in subsoil properties and their effects on crop nutrition

    Soil water repellence increased early wheat growth and nutrient uptake

    Get PDF
    Purpose Soil water repellence causes uneven soil wetting which can constrain dryland crop and pasture establishment and yield. The same processes are likely to affect nutrient availability from soil and fertiliser, but the effects of repellence on crop growth and nutrition per se have seldom been reported. Here, we investigated early wheat (Triticum aestivum cv. Mace) growth and nutrient uptake responses to repellence. Methods Wheat was furrow-sown in severely repellent sandy loam soil (with a wettable furrow base to allow for germination) or completely wettable soil, under uniform plant density and variable topsoil thickness (20 or 100 mm) and fertiliser band placement (below or away from the seed). Tiller number, shoot dry matter, shoot N concentration, total nutrient uptake, and root length density (RLD) were determined. Results Contrary to expectations, repellence significantly increased tiller number (by up to 2 tillers per plant), shoot dry matter (by 82%), shoot N concentration (by 0.3% N), and total nutrient uptake (by 87%) at 51 days after sowing, regardless of topsoil thickness and fertiliser placement. In the furrow, RLD of repellent treatments was also nearly double that in wettable treatments when fertiliser was banded below the seed. Results suggest that preferential soil wetting of the furrow in repellent treatments favoured plant nutrient uptake under regular but low water supply. Conclusion We conclude that for water-repellent soils with limited water supply, water harvesting techniques such as furrow sowing and banding wetting agents could boost water and nutrient uptake and early crop growth

    Pathfinder cells provide a novel therapeutic intervention for acute kidney injury

    Get PDF
    Pathfinder cells (PCs) are a novel class of adult-derived cells that facilitate functional repair of host tissue. We used rat PCs to demonstrate that they enable the functional mitigation of ischemia reperfusion (I/R) injury in a mouse model of renal damage. Female C57BL/6 mice were subjected to 30 min of renal ischemia and treated with intravenous (i.v.) injection of saline (control) or male rat pancreas-derived PCs in blinded experimentation. Kidney function was assessed 14 days after treatment by measuring serum creatinine (SC) levels. Kidney tissue was assessed by immunohistochemistry (IHC) for markers of cellular damage, proliferation, and senescence (TUNEL, Ki67, p16ink4a, p21). Fluorescence in situ hybridization (FISH) was performed to determine the presence of any rat (i.e., pathfinder) cells in the mouse tissue. PC-treated animals demonstrated superior renal function at day 14 post-I/R, in comparison to saline-treated controls, as measured by SC levels (0.13 mg/dL vs. 0.23 mg/dL, p<0.001). PC-treated kidney tissue expressed significantly lower levels of p16ink4a in comparison to the control group (p=0.009). FISH analysis demonstrated that the overwhelming majority of repaired kidney tissue was mouse in origin. Rat PCs were only detected at a frequency of 0.02%. These data confirm that PCs have the ability to mitigate functional damage to kidney tissue following I/R injury. Kidneys of PC-treated animals showed evidence of improved function and reduced expression of damage markers. The PCs appear to act in a paracrine fashion, stimulating the host tissue to recover functionally, rather than by differentiating into renal cells. This study demonstrates that pancreatic-derived PCs from the adult rat can enable functional repair of renal damage in mice. It validates the use of PCs to regenerate damaged tissues and also offers a novel therapeutic intervention for repair of solid organ damage in situ

    Soil water repellence increased early wheat growth and nutrient uptake

    Get PDF
    Purpose: Soil water repellence causes uneven soil wetting which can constrain dryland crop and pasture establishment and yield. The same processes are likely to affect nutrient availability from soil and fertiliser, but the effects of repellence on crop growth and nutrition per se have seldom been reported. Here, we investigated early wheat (Triticum aestivum cv. Mace) growth and nutrient uptake responses to repellence. Methods: Wheat was furrow-sown in severely repellent sandy loam soil (with a wettable furrow base to allow for germination) or completely wettable soil, under uniform plant density and variable topsoil thickness (20 or 100 mm) and fertiliser band placement (below or away from the seed). Tiller number, shoot dry matter, shoot N concentration, total nutrient uptake, and root length density (RLD) were determined. Results: Contrary to expectations, repellence significantly increased tiller number (by up to 2 tillers per plant), shoot dry matter (by 82%), shoot N concentration (by 0.3% N), and total nutrient uptake (by 87%) at 51 days after sowing, regardless of topsoil thickness and fertiliser placement. In the furrow, RLD of repellent treatments was also nearly double that in wettable treatments when fertiliser was banded below the seed. Results suggest that preferential soil wetting of the furrow in repellent treatments favoured plant nutrient uptake under regular but low water supply. Conclusion: We conclude that for water-repellent soils with limited water supply, water harvesting techniques such as furrow sowing and banding wetting agents could boost water and nutrient uptake and early crop growth

    Amplitude Zeros in Radiative Decays of Scalar Particles

    Full text link
    We study amplitude zeros in radiative decay processes with a photon or a gluon emission of all possible scalar particles(e.g. scalar leptoquarks) which may interact with the usual fermions in models beyond the standard model. For the decays with a photon emission, the amplitudes clearly exhibit the factorization property and the differential decay rates vanish at specific values of a certain variable which are determined only by the electric charges of the particles involved and independent of the particle masses and the various couplings. For the decays with a gluon emission, even though the zeros are washed away, the differential decay rates still have distinct minima. The branching ratios as a function of leptoquark masses are presented for the scalar leptoquark decays. We also comment on the decays of vector particles into two fermions and a photon.Comment: Revtex, 17 pages + 6 figures (available upon request), Preprint, OITS559. Several typos with tex file were correcte

    Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis

    Get PDF
    Enzymatic hydrolysis of α-L-fucose from fucosylated glycoconjugates is consequential in bacterial infections and the neurodegenerative lysosomal storage disorder fucosidosis. Understanding human α-L-fucosidase catalysis, in an effort toward drug design, has been hindered by the absence of three-dimensional structural data for any animal fucosidase. Here, we have used cryoelectron microscopy (cryo-EM) to determine the structure of human lysosomal α-L-fucosidase (FucA1) in both an unliganded state and in complex with the inhibitor deoxyfuconojirimycin. These structures, determined at 2.49 Å resolution, reveal the homotetrameric structure of FucA1, the architecture of the catalytic center, and the location of both natural population variations and disease-causing mutations. Furthermore, this work has conclusively identified the hitherto contentious identity of the catalytic acid/base as aspartate-276, representing a shift from both the canonical glutamate acid/base residue and a previously proposed glutamate residue. These findings have furthered our understanding of how FucA1 functions in both health and disease.Bio-organic Synthesi
    • 

    corecore