30 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin’s lymphoma and facilitates ultrasensitive residual disease detection

    No full text
    BACKGROUND: Individualization of treatment in Hodgkin's lymphoma is necessary to improve cure rates and reduce treatment side effects. Currently, it is hindered by a lack of genomic characterization and sensitive molecular response assessment. Sequencing of cell-free DNA is a powerful strategy to understand the cancer genome and can be used for extremely sensitive disease monitoring. In Hodgkin's lymphoma, a high proportion of cell-free DNA is tumor-derived, whereas traditional tumor biopsies only contain a little tumor-derived DNA. METHODS: We comprehensively genotype and assess minimal residual disease in 121 patients with baseline plasma as well as 77 follow-up samples from a subset of patients with our targeted cell-free DNA sequencing platform. FINDINGS: We present an integrated landscape of mutations and copy number variations in Hodgkin's lymphoma. In addition, we perform a deep analysis of mutational processes driving Hodgkin's lymphoma, investigate the clonal structure of Hodgkin's lymphoma, and link several genotypes to Hodgkin's lymphoma phenotypes and outcome. Finally, we show that minimal residual disease assessment by repeat cell-free DNA sequencing, as early as a week after treatment initiation, predicts treatment response and progression-free survival, allowing highly improved treatment guidance and relapse prediction. CONCLUSIONS: Our targeted cell-free DNA sequencing platform reveals the genomic landscape of Hodgkin's lymphoma and facilitates ultrasensitive detection of minimal residual disease

    Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies

    No full text
    Over the last 40 years, great progress has been made in treating childhood and adult cancers. However, this progress has come at an unforeseen cost, in the form of emerging long-term effects of anthracycline treatment. A major complication of anthracycline therapy is its adverse cardiovascular effects. If these cardiac complications could be reduced or prevented, higher doses of anthracyclines could potentially be used, thereby further increasing cancer cure rates. Moreover, as the incidence of cardiac toxicity resulting in congestive heart failure or even heart transplantation dropped, the quality and extent of life for cancer survivors would improve. We review the proposed mechanisms of action of anthracyclines and the consequences associated with anthracycline treatment in children and adults. We summarise the most promising current strategies to limit or prevent anthracycline-induced cardiotoxicity, as well as possible strategies to prevent existing cardiomyopathy from worsenin

    Natural Killer Cell Receptors

    No full text
    corecore