16 research outputs found

    Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar

    No full text
    Item does not contain fulltextSome suggest race-specific cutpoints for kidney measures to define and stage chronic kidney disease (CKD), but evidence for race-specific clinical impact is limited. To address this issue, we compared hazard ratios of estimated glomerular filtration rates (eGFR) and albuminuria across races using meta-regression in 1.1 million adults (75% Asians, 21% Whites, and 4% Blacks) from 45 cohorts. Results came mainly from 25 general population cohorts comprising 0.9 million individuals. The associations of lower eGFR and higher albuminuria with mortality and end-stage renal disease (ESRD) were largely similar across races. For example, in Asians, Whites, and Blacks, the adjusted hazard ratios (95% confidence interval) for eGFR 45-59 versus 90-104 ml/min per 1.73 m(2) were 1.3 (1.2-1.3), 1.1 (1.0-1.2), and 1.3 (1.1-1.7) for all-cause mortality, 1.6 (1.5-1.7), 1.4 (1.2-1.7), and 1.4 (0.7-2.9) for cardiovascular mortality, and 27.6 (11.1-68.7), 11.2 (6.0-20.9), and 4.1 (2.2-7.5) for ESRD, respectively. The corresponding hazard ratios for urine albumin-to-creatinine ratio 30-299 mg/g or dipstick 1+ versus an albumin-to-creatinine ratio under 10 or dipstick negative were 1.6 (1.4-1.8), 1.7 (1.5-1.9), and 1.8 (1.7-2.1) for all-cause mortality, 1.7 (1.4-2.0), 1.8 (1.5-2.1), and 2.8 (2.2-3.6) for cardiovascular mortality, and 7.4 (2.0-27.6), 4.0 (2.8-5.9), and 5.6 (3.4-9.2) for ESRD, respectively. Thus, the relative mortality or ESRD risks of lower eGFR and higher albuminuria were largely similar among three major races, supporting similar clinical approach to CKD definition and staging, across races

    Quantification of global and national nitrogen budgets for crop production

    No full text
    Input–output estimates of nitrogen on cropland are essential for improving nitrogen management and better understanding the global nitrogen cycle. Here, we compare 13 nitrogen budget datasets covering 115 countries and regions over 1961–2015. Although most datasets showed similar spatiotemporal patterns, some annual estimates varied widely among them, resulting in large ranges and uncertainty. In 2010, global medians (in TgN yr−1) and associated minimum–maximum ranges were 73 (64–84) for global harvested crop nitrogen; 161 (139–192) for total nitrogen inputs; 86 (68–97) for nitrogen surplus; and 46% (40–53%) for nitrogen use efficiency. Some of the most uncertain nitrogen budget terms by country showed ranges as large as their medians, revealing areas for improvement. A benchmark nitrogen budget dataset, derived from central tendencies of the original datasets, can be used in model comparisons and inform sustainable nitrogen management in food systems

    Light induced transformations of small nitroso compounds in low temperature rare gas matrices

    No full text

    2 Hydrogen-1 NMR. Coupling constant. Substance no. 1ff

    No full text
    corecore