106 research outputs found
Combating automative engine valve recession
[INTRODUCTION] Valve recession occurs when wear of the valve or seat inserts in an automotive engine has
caused the valve to sink or recede into the seat insert (as shown in Figure 1). Excessive recession leads to valves not seating correctly and cylinder pressure loss. Leaking hot combustion gases can also cause valve guttering or torching, which will accelerate valve
failure.
Although new valve materials and production techniques are constantly being developed,
these advances have been outpaced by demands for increased engine performance and wear
related problems remain an issue. Dynamometer engine testing is often used to establish
short-term solutions. This is time consuming and does not necessarily reveal the actual causes
of wear.
A long-term approach is required in order to understand fundamental wear mechanisms and the effect of varying engine operating conditions or design changes to the valve train. This information can then be used to develop tools for predicting wear and for solving problems more quickly if they do occur. In this case study, such tools were developed using a combination of component failure analysis, bench test work and wear modelling
Wear mechanisms and transitions in railway wheel steels
The need to improve safety and reduce costs means that new specifications are being imposed on railway wheel wear. These mean that more durable wheel steels are required. In order to develop such materials, a greater understanding is needed of the wear mechanisms and transitions occurring in wheel steels. In this work, twin-disc wear testing has been carried out to study the wear characteristics of R8T railway wheel steel. The results have indicated that, compared with previous wheel steels, R8T offers greater wear resistance. Three wear regimes were identified; mild, severe, and catastrophic. Wear rates were seen to increase steadily initially and then to level off, before increasing rapidly as the severity of the contact conditions increased. This paper is concerned with the form of the data and the reasons for the transitions. Analysis of the contact conditions indicated that the first transition in the wear rate was caused by the change from partial slip to full slip conditions at the disc interface. Temperature calculations for the contact showed that the large increase in wear rates seen at the second wear transition may result from a thermally induced reduction in yield strength and other material properties. This improved understanding will help in progressing towards the aim of eventually attaining a wear modelling methodology reliant on material properties rather than wear constants derived from testing
Wear effects and mechanisms of soot-contaminated automotive lubricants
A study has been carried out to investigate the influence of soot-contaminated automotive lubricants in the wear process of a simulated engine valve train contact. Previous research on this topic has been mainly performed from a chemical point of view in fundamental studies, with insufficient relevance to real engine conditions, i.e. load and geometry. This study investigates the conditions under which wear occurs through specimen testing. The objective of the work was to understand the wear mechanisms that occur within the contaminated contact zone, to help in future development of a predictive wear model to assist in the valve-train design process. The effects of soot in lubricants have been tested using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a bath of oil and a steel ball (replicating a valve train contact) is attached to a reciprocating arm. The materials, contact geometry and loading conditions are all related to specific conditions experienced within an engine's valve train. The testing was carried out under various contact conditions, using carbon black as a soot simulant. Wear measurements were taken during the tests and wear scar morphology was studied. The results have revealed how varying lubrication conditions changes the wear rate of engine components and determines the wear mechanism that dominates for specific situations
Wear of a chute in a rice sorting machine
In a rice sorting machine, rice grains drop onto and slide down an anodised aluminium chute. The purpose of the chute is to separate the grains and provide a controlled distribution. At the bottom of the chute the grains are examined optically and contaminants or defective grains
are removed from the stream by jets of air. The machine has the ability to sort low quality rice which contains a large element of contaminants such as husk. The husk is extremely
abrasive and this, along with other factors, can lead to a reduction in the life of the chute by wear of the surface.
In this work a failure analysis process was undertaken to establish the nature and causes of the chute surface wear and the mechanisms of material removal. Wear occurs initially at the location where the grains first strike the chute and at subsequent regions down the chute where bounce occurs.
An experimental and analytical examination of the rice motion on impacting the chute was also carried out along with some friction testing of potential replacement chute materials. The evidence gathered during the failure analysis along with the experimental analysis was
used to propose possible material/design improvements
Measurement of interface pressure in interference fits
When components such as bearings or gears are pressed onto a shaft, the resulting interference induces a pressure at the interface. The size of this pressure is important as many components fail because fatigue initiates from press-fit stress concentrations. The aim of the present work was to develop ultrasound as a tool for non-destructive determination of press-fit contact pressures. An interference fit interface behaves like a spring. If the pressure is high, there are few air gaps, so it is very stiff and allows transmission of an ultrasonic wave. If the pressure is low, then interface stiffness is lower and most ultrasound is reflected. A spring model was used to determine maps of contact stiffness from interference-fit ultrasonic reflection data. A calibration procedure was then used to determine the pressure. The interface contact pressure has been determined for a number of different press- and shrink-fit cases. The results show a central region of approximately uniform pressure with edge stress at the contact sides. The magnitude of the pressure in the central region agrees well with the elastic Lamé analysis. In the more severe press-fit cases, the surfaces scuffed which led to anomalies in the reflected ultrasound. These anomalies were associated with regions of surface damage at the interface. The average contact pressure in a shrink-fit and press-fit joint were similar. However, in the shrink-fit joint more uneven contact pressure was observed with regions of poor conformity. This could be because the action of pressing on a sleeve plastically smooths out long wavelength roughness, leading to a more conforming surface
Wheel/Rail Contact Isolation Due to Track Contamination
An experimental study has been carried out to
investigate the effect of sanding on the electrical
isolation of a wheel/rail contact. Sand is applied to the
wheel/rail interface to increase adhesion in both braking
and traction. Train detection, for signalling purposes,
can be by means of track circuits. Signalling block
occupancy is triggered by the wheelset of the train
‘shorting out’ the track circuit. Sand in the wheel/rail
interface means that contact between the wheelsets and
the track may be compromised, inhibiting train
identification.
Static tests were performed using sections cut
from wheels and rail and dynamic tests on a twin disc
machine where rail and wheel steel discs are loaded
together and driven under controlled conditions of
rolling and slip. The electrical circuit used was a
simplified simulation of the TI21 track circuit.
The application of sand was carried out under a
range of mild and severe test conditions. The results
indicated that a transition exists in the amount of sand
applied, below which there is a measurable, but not
severe, change in voltage, but above which the contact
conductance decreases by an order of magnitude. A
model of electrical isolation has been developed
assuming either full disc separation by a sand layer or
partial disc contact with some sand present.
Idealisations inherent in both test methods mean
that they represent a severe case. Given these
limitations, it is likely that the test methods, at their
present stage of development, should be used as a
means to qualitatively assess the relative effects on
electrical isolation of different contaminants
A method for the measurement of hydrodynamic oil films using ultrasonic reflection
The measurement of the thickness of an oil film in a lubricated component is essential information for performance monitoring and control. In this work, a new method for oil film thickness measurement, based on the reflection of ultrasound, is evaluated for use in fluid film journal bearing applications. An ultrasonic wave will be partially reflected when it strikes a thin layer between two solid media. The proportion of the wave reflected depends on the thickness of the layer and its acoustic properties. A simple quasi-static spring model shows how the reflection depends on the stiffness of the layer alone. This method has been first evaluated using flat plates separated by a film of oil, and then used in the measurement of oil films in a hydrodynamic journal bearing. A transducer is mounted on the outside of the journal and a pulse propagated through the shell. The pulse is reflected back at the oil film and received by the same transducer. The amplitude of the reflected wave is processed in the frequency domain. The spring model is then used to determine the oil film stiffness that can be readily converted to film thickness. Whilst the reflected amplitude of the wave is dependent on the frequency component, the measured film thickness is not; this indicates that the quasi-static assumption holds. Measurements of the lubricant film generated in a simple journal bearing have been taken over a range of loads and speeds. The results are compared with predictions from classical hydrodynamic lubrication theory. The technique has also been used to measure oil film thickness during transient loading events. The response time is rapid and film thickness variation due to step changes in load and oil feed pressure can be clearly observed
A new approach for the measurement of film thickness in liquid face seals
Face seals operate by allowing a small volume of the sealed fluid to escape and form a thin film between the contacting parts. The thickness of this film must be optimized to ensure that the faces are separated, yet the leakage is minimized. In this work the liquid film is measured using a novel ultrasonic approach with a view to developing a condition monitoring tool. The trials were performed in two stages. Initially tests were based on a lab simulation, where it was possible to compare the ultrasonic film thickness measurements with optical interference methods and capacitance methods. A direct correlation was seen between ultrasonic measurements and capacitance. Where ultrasonic and optical methods overlap, good correlation is observed; however, the optical method will not record film thickness above 0.72 m. A second set of trials was carried out, where the film thickness was monitored inside a seal test apparatus. Film thickness was successfully recorded as speed and load were varied. The results showed that while stationary the film thickness varied noticeably with load. When rotating, however, the oil film remained relatively stable around 2 m. During the normal operation of the seal, both sudden speed and load changes were applied in order to initiate a seal failure. During these events, the measured film thickness was seen to drop dramatically down to 0.2 m. This demonstrated the ability of the technique to predict failure in a face seal and therefore its aptitude for condition monitoring
The mechanisms of pedestrian slip on flooring contaminated with solid particles
Statistics by the UK Health and Safety Executive (HSE) suggest that slips, trips and falls account for up to one in three major workplace accidents. The vast majority of these accidents are the result of contaminant (fluid or solid) within the shoe-floor contact. Though the lubrication mechanisms for liquid contaminants within the contact are well understood, the same cannot be said for particulate contaminants. This paper considers the key parameters controlling friction in a shoe-floor contact contaminated with various particles of different diameters and shape factors and floors with different roughness values (Rz). Experiments were conducted using a Stanley Pendulum Tester, which is the floor friction tester recommended by the HSE. Results suggest that the adhesive friction is significantly affected by particulate contaminants, while the hysteretic component is not. Three lubrication mechanisms identified as sliding, shearing and rolling have been observed depending on floor roughness, particle size and shape factor and have been plotted in a simple map to predict behaviour
A model for the reflection of shear ultrasonic waves at a thin liquid film and its application to viscometry in a journal bearing
The apparent viscosity of oils in the thin layers that exist in machine elements such as gears and bearings is very different to that in the bulk. In addition, oils in lubricating layers are characterized by non-Newtonian behaviour due to the severe thermodynamic conditions that arise. It is this viscosity that determines the film thickness in lubricated mechanical components. This paper describes a novel methodology based on an ultrasonic approach to determine viscosity in situ in a lubricated contact. The methodology considers the lubricant at the solid boundary as a Maxwell viscoelastic fluid and determines its response to an ultrasonic wave. This approach is then compared with existing methodologies in both a static contact and in a rotating journal bearing. The obtained results have shown that the algorithm proposed in this study is most suitable to study lubricants in the range of 0.3–3 Pas and the measurement error has been found to be less than 10%. This viscosity range is common in components such as cam-follower, CVT transmissions and highly loaded journal bearings. At lower viscosities, the measurement method suffers from excessive error caused by the acoustic mismatch between the bearing component and the oil film and the resulting difficulty in obtaining a high enough signal-to-noise ratio
- …