An experimental study has been carried out to
investigate the effect of sanding on the electrical
isolation of a wheel/rail contact. Sand is applied to the
wheel/rail interface to increase adhesion in both braking
and traction. Train detection, for signalling purposes,
can be by means of track circuits. Signalling block
occupancy is triggered by the wheelset of the train
‘shorting out’ the track circuit. Sand in the wheel/rail
interface means that contact between the wheelsets and
the track may be compromised, inhibiting train
identification.
Static tests were performed using sections cut
from wheels and rail and dynamic tests on a twin disc
machine where rail and wheel steel discs are loaded
together and driven under controlled conditions of
rolling and slip. The electrical circuit used was a
simplified simulation of the TI21 track circuit.
The application of sand was carried out under a
range of mild and severe test conditions. The results
indicated that a transition exists in the amount of sand
applied, below which there is a measurable, but not
severe, change in voltage, but above which the contact
conductance decreases by an order of magnitude. A
model of electrical isolation has been developed
assuming either full disc separation by a sand layer or
partial disc contact with some sand present.
Idealisations inherent in both test methods mean
that they represent a severe case. Given these
limitations, it is likely that the test methods, at their
present stage of development, should be used as a
means to qualitatively assess the relative effects on
electrical isolation of different contaminants