1,313 research outputs found
Links between surface productivity and deep ocean particle flux at the Porcupine Abyssal Plain sustained observatory
In this study we present hydrography, biogeochemistry and sediment trap observations between 2003 and 2012 at Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. The time series is valuable as it allows for investigation of the link between surface productivity and deep ocean carbon flux. The region is a perennial sink for CO2, with an average uptake of around 1.5 mmol m?2 day?1. The average monthly drawdowns of inorganic carbon and nitrogen were used to quantify the net community production (NCP) and new production. Seasonal NCP and new production were found to be 4.57 ± 0.85 mol C m?2 and 0.37 ± 0.14 mol N m?2, respectively. The C : N ratio was high (12) compared to the Redfield ratio (6.6), and the production calculated from carbon was higher than production calculated from nitrogen, which is indicative of carbon overconsumption. The export ratio and transfer efficiency were 16 and 4 %, respectively, and the site thereby showed high flux attenuation. Particle tracking was used to examine the source region of material in the sediment trap, and there was large variation in source regions, both between and within years. There were higher correlations between surface productivity and export flux when using the particle-tracking approach, than by comparing with the mean productivity in a 100 km box around the PAP site. However, the differences in correlation coefficients were not significant, and a longer time series is needed to draw conclusions on applying particle tracking in sediment trap analyses
Intersubband plasmons in quasi-one-dimensional electron systems on a liquid helium surface
The collective excitation spectra are studied for a multisubband
quasi-one-dimensional electron gas on the surface of liquid helium. Different
intersubband plasmon modes are identified by calculating the spectral weight
function of the electron gas within a 12 subband model. Strong intersubband
coupling and depolarization shifts are found. When the plasmon energy is close
to the energy differences between two subbands, Landau damping in this finite
temperature system leads to plasmon gaps at small wavevectors.Comment: To be published as a Rapid Communication in Phys. Rev.
Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples
Many simulation studies in biomedicine are based on a similar sequence of processing steps, starting from images and running through geometric model generation, assignment of tissue properties, numerical simulation and visualization of the results—a process known as image-based geometric modelling and simulation. We present an overview of software systems for implementing such a sequence both within highly integrated problem-solving environments and in the form of loosely integrated pipelines. Loose integration in this case indicates that individual programs function largely independently but communicate through files of a common format and support simple scripting, so as to automate multiple executions wherever possible. We then describe three specific applications of such pipelines to translational biomedical research in electrophysiology
Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes
Due to its large surface area and strongly attractive potential, a bundle of
carbon nanotubes is an ideal substrate material for gas storage. In addition,
adsorption in nanotubes can be exploited in order to separate the components of
a mixture. In this paper, we investigate the preferential adsorption of D_2
versus H_2(isotope selectivity) and of ortho versus para(spin selectivity)
molecules confined in the one-dimensional grooves and interstitial channels of
carbon nanotube bundles. We perform selectivity calculations in the low
coverage regime, neglecting interactions between adsorbate molecules. We find
substantial spin selectivity for a range of temperatures up to 100 K, and even
greater isotope selectivity for an extended range of temperatures,up to 300 K.
This isotope selectivity is consistent with recent experimental data, which
exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed
in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
Children’s depressive symptoms and their regulation of negative affect in response to vignette-depicted emotion-eliciting events
The present study examined the relationship between sub-clinical depressive symptoms and children's anticipated cognitive and behavioral reactions to two written vignettes depicting emotion-eliciting stressors (i.e., fight with one's best friend and failure at a roller blade contest). Participants (N = 244) ranging in age between 10 and 13 were presented each vignette and then asked to rate their anticipated utilization of each of seven emotion-regulation strategies (ERs), along with the anticipated mood enhancement effects of each strategy. In addition, ratings of participants' perceived coping efficacy to manage the stressful situation were collected. Results indicated that participants were more likely to endorse ERs for which they have greater confidence in their mood enhancement effects. Moreover, marked differences were observed between ratings for conceptually distinct cognitive ERs. Consistent with expectations, results revealed that participants displaying higher levels of depressive symptoms were more likely to endorse cognitive and behavioral ERs that are negative, passive, and/or avoidant in nature. Children's ratings of the anticipated mood enhancement effects of several ERs were inversely related to their level of depressive symptoms, as was their perceived self-efficacy to manage the stressor. © 2007 The International Society for the Study of Behavioural Development
Stability analysis of agegraphic dark energy in Brans-Dicke cosmology
Stability analysis of agegraphic dark energy in Brans-Dicke theory is
presented in this paper. We constrain the model parameters with the
observational data and thus the results become broadly consistent with those
expected from experiment. Stability analysis of the model without best fitting
shows that universe may begin from an unstable state passing a saddle point and
finally become stable in future. However, with the best fitted model, There is
no saddle intermediate state. The agegraphic dark energy in the model by itself
exhibits a phantom behavior. However, contribution of cold dark matter on the
effective energy density modifies the state of teh universe from phantom phase
to quintessence one. The statefinder diagnosis also indicates that the universe
leaves an unstable state in the past, passes the LCDM state and finally
approaches the sable state in future.Comment: 15 pages, 12 figure
Understanding Galaxy Formation and Evolution
The old dream of integrating into one the study of micro and macrocosmos is
now a reality. Cosmology, astrophysics, and particle physics intersect in a
scenario (but still not a theory) of cosmic structure formation and evolution
called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to
explain the origin of galaxies. In these lecture notes, I first present a
review of the main galaxy properties, highlighting the questions that any
theory of galaxy formation should explain. Then, the cosmological framework and
the main aspects of primordial perturbation generation and evolution are
pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation,
presenting a review on LCDM halo assembling and properties, and on the main
candidates for non-baryonic dark matter. It is shown how the nature of
elemental particles can influence on the features of galaxies and their
systems. Finally, the complex processes of baryon dissipation inside the
non-linearly evolving CDM halos, formation of disks and spheroids, and
transformation of gas into stars are briefly described, remarking on the
possibility of a few driving factors and parameters able to explain the main
body of galaxy properties. A summary and a discussion of some of the issues and
open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD
THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf).
Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005
(submitted to the Editors on March 15, 2006
Observational tests of the galaxy formation process
The mutual feedback between star formation and nuclear activity in large
spheroidal galaxies may be a key ingredient to overcome several difficulties
plaguing current semi-analytic models for galaxy formation. We discuss some
observational implications of the model by Granato et al. (2003) for the
co-evolution of galaxies and active nuclei at their centers and stress the
potential of the forthcoming surveys of the Sunyaev-Zeldovich effect on
arcminute scales, down to K levels, to investigate the early galaxy
formation phases, difficult to access by other means.Comment: 6, pages, 1 figure, to appear in proc. of the meeting "Baryons on
Cosmic Structures", Roma, October 20-21, 200
The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type
We investigate the dependence of galaxy clustering on luminosity and spectral type using the 2dF Galaxy Redshift Survey (2dFGRS). Spectral types are assigned using the principal-component analysis of Madgwick et al. We divide the sample into two broad spectral classes: galaxies with strong emission lines ('late types') and more quiescent galaxies ('early types'). We measure the clustering in real space, free from any distortion of the clustering pattern owing to peculiar velocities, for a series of volume-limited samples. The projected correlation functions of both spectral types are well described by a power law for transverse separations in the range 2<(σ/h-1 Mpc)<15, with a marginally steeper slope for early types than late types. Both early and late types have approximately the same dependence of clustering strength on luminosity, with the clustering amplitude increasing by a factor of 2.5 between L* and 4L*. At all luminosities, however, the correlation function amplitude for the early types is 50 per cent higher than that of the late types. These results support the view that luminosity, and not type, is the dominant factor in determining how the clustering strength of the whole galaxy population varies with luminosity
Au+Au Reactions at the AGS: Experiments E866 and E917
Particle production and correlation functions from Au+Au reactions have been
measured as a function of both beam energy (2-10.7AGeV) and impact parameter.
These results are used to probe the dynamics of heavy-ion reactions, confront
hadronic models over a wide range of conditions and to search for the onset of
new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9
- …