403 research outputs found
Attractor Solution of Phantom Field
In light of recent study on the dark energy models that manifest an equation
of state , we investigate the cosmological evolution of phantom field in
a specific potential, exponential potential in this paper. The phase plane
analysis show that the there is a late time attractor solution in this model,
which address the similar issues as that of fine tuning problems in
conventional quintessence models. The equation of state is determined by
the attractor solution which is dependent on the parameter in the
potential. We also show that this model is stable for our present observable
universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is
the final version to match the published versio
Phantom Cosmology with Non-minimally Coupled Real Scalar Field
We find that the expansion of the universe is accelerating by analyzing the
recent observation data of type \textsc{I}a supernova(SN-Ia) .It indicates
that the equation of state of the dark energy might be smaller than -1,which
leads to the introduction of phantom models featured by its negative kinetic
energy to account for the regime of equation of state parameter .In this
paper the possibility of using a non-minimally coupled real scalar field as
phantom to realize the equation of state parameter is discussed.The main
equations which govern the evolution of the universe are obtained.Then we
rewrite them with the observable quantities.Comment: 12 pages, 2 figures. Accepted for publication in Gen.Rel.Gra
Phantom Field with O(N) Symmetry in Exponential Potential
In this paper, we study the phase space of phantom model with O(\emph{N})
symmetry in exponential potential. Different from the model without O(\emph{N})
symmetry, the introduction of the symmetry leads to a lower bound on the
equation of state for the existence of stable phantom dominated attractor
phase. The reconstruction relation between the potential of O(\textit{N})
phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.
Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up
We consider late-time cosmology in a (phantom) scalar-tensor theory with an
exponential potential, as a dark energy model with equation of state parameter
close to -1 (a bit above or below this value). Scalar (and also other kinds of)
matter can be easily taken into account. An exact spatially-flat FRW cosmology
is constructed for such theory, which admits (eternal or transient)
acceleration phases for the current universe, in correspondence with
observational results. Some remarks on the possible origin of the phantom,
starting from a more fundamental theory, are also made. It is shown that
quantum gravity effects may prevent (or, at least, delay or soften) the cosmic
doomsday catastrophe associated with the phantom, i.e. the otherwise
unavoidable finite-time future singularity (Big Rip). A novel dark energy model
(higher-derivative scalar-tensor theory) is introduced and it is shown to admit
an effective phantom/quintessence description with a transient acceleration
phase. In this case, gravity favors that an initially insignificant portion of
dark energy becomes dominant over the standard matter/radiation components in
the evolution process.Comment: LaTeX file, 48 pages, discussion of Big Rip is enlarged, a reference
is adde
Phase-Sensitive Tetracrystal Pairing-Symmetry Measurements and Broken Time-Reversal Symmetry States of High Tc Superconductors
A detailed analysis of the symmetric tetracrystal geometry used in
phase-sensitive pairing symmetry experiments on high Tc superconductors is
carried out for both bulk and surface time-reversal symmetry-breaking states,
such as the d+id' and d+is states. The results depend critically on the
substrate geometry. In the general case, for the bulk d+id' (or d+is) state,
the measured flux quantization should in general not be too different from that
obtained in the pure d-wave case, provided |d'| << |d| (or |s| << |d|).
However, in one particular high symmetry geometry, the d+id' state gives
results that allow it to be distinguished from the pure d and the d + is
states. Results are also given for the cases where surface d+is or d+id' states
occur at a [110] surface of a bulk d-wave superconductor. Remarkably, in the
highest symmetry geometry, a number of the broken time-reversal symmetry states
discussed above give flux quantization conditions usually associated with
states not having broken time- reversal symmetry.Comment: 6 page
The Tensor to Scalar Ratio of Phantom Dark Energy Models
We investigate the anisotropies in the cosmic microwave background in a class
of models which possess a positive cosmic energy density but negative pressure,
with a constant equation of state w = p/rho < -1. We calculate the temperature
and polarization anisotropy spectra for both scalar and tensor perturbations by
modifying the publicly available code CMBfast. For a constant initial curvature
perturbation or tensor normalization, we have calculated the final anisotropy
spectra as a function of the dark energy density and equation of state w and of
the scalar and tensor spectral indices. This allows us to calculate the
dependence of the tensor-to-scalar ratio on w in a model with phantom dark
energy, which may be important for interpreting any future detection of
long-wavelength gravitational waves.Comment: 5 pages, 4 figure
Unfolding and Folding Internal Friction of β‑Hairpins Is Smaller than That of α‑Helices
By the forced unfolding of polyglutamine and polyalanine
homopeptides in competing α-helix and β-hairpin secondary structures, we disentangle equilibrium free energetics from nonequilibrium dissipative effects. We find that α-helices are characterized by larger friction or dissipation upon
unfolding, regardless of whether they are free energetically preferred over β-hairpins or not. Our analysis, based on MD simulations for atomistic peptide
models with explicit water, suggests that this difference is related to the internal friction and mostly caused by the different number of intrapeptide hydrogen bonds in the α-helix and β-hairpin states
Quantum-fluctuation-induced repelling interaction of quantum string between walls
Quantum string, which was brought into discussion recently as a model for the
stripe phase in doped cuprates, is simulated by means of the
density-matrix-renormalization-group method. String collides with adjacent
neighbors, as it wonders, owing to quantum zero-point fluctuations. The energy
cost due to the collisions is our main concern. Embedding a quantum string
between rigid walls with separation d, we found that for sufficiently large d,
collision-induced energy cost obeys the formula \sim exp (- A d^alpha) with
alpha=0.808(1), and string's mean fluctuation width grows logarithmically \sim
log d. Those results are not understood in terms of conventional picture that
the string is `disordered,' and only the short-wave-length fluctuations
contribute to collisions. Rather, our results support a recent proposal that
owing to collisions, short-wave-length fluctuations are suppressed, but
instead, long-wave-length fluctuations become significant. This mechanism would
be responsible for stabilizing the stripe phase
The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum
Based on the 4D momentum, the influence of quintessence on the gravitational
frequency shift and the deflection of light are examined in modified
Schwarzschild space. We find that the frequency of photon depends on the state
parameter of quintessence : the frequency increases for and
decreases for . Meanwhile, we adopt an integral power number
() to solve the orbital equation of photon. The photon's
potentials become higher with the decrease of . The behavior of
bending light depends on the state parameter sensitively. In
particular, for the case of , there is no influence on the
deflection of light by quintessence. Else, according to the H-masers of GP-A
redshift experiment and the long-baseline interferometry, the constraints on
the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
- …
