1,437 research outputs found

    Geometric creation of quantum vorticity

    Get PDF
    We consider superfluidity and quantum vorticity in rotating spacetimes. The system is described by a complex scalar satisfying a nonlinear Klein-Gordon equation. Rotation terms are identified and found to lead to the transfer of angular momentum of the spacetime to the scalar field. The scalar field responds by rotating, physically behaving as a superfluid, through the creation of quantized vortices. We demonstrate the vortex nucleation through numerical simulatio

    Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation

    Get PDF
    We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime.The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the non-relativistic nonlinear Schr¨odinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gase

    Some FRW Models of Accelerating Universe with Dark Energy

    Full text link
    The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (1983) has been utilized to solve the field equations. The Berman's law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure

    The pressure of hot QCD up to g^6 ln(1/g)

    Full text link
    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the coupling constant series down to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.

    Effect of a Physical Phase Plate on Contrast Transfer in an Aberration-Corrected Transmission Electron Microscope

    Full text link
    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions - i.e. range of Cs-values and defocus - for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in Cs-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and Cs-variations, compared to a microscope without a phase plate

    Generalized Holographic Dark Energy Model

    Full text link
    In this paper, the model of holographic Chaplygin gas has been extended to two general cases: first is the case of modified variable Chaplygin gas and secondly of the viscous generalized Chaplygin gas. The dynamics of the model are expressed by the use of scalar fields and the scalar potentials.Comment: 12 pages, to appear in Eur. Phys. J.

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges

    The Isgur-Wise function in a relativistic model for qQˉq\bar Q system

    Full text link
    We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz scalar) linear '' potential to estimate the light quark wavefunction for qQˉ q\bar Q mesons in the limit mQm_Q\to \infty. We use these wavefunctions to calculate the Isgur-Wise function ξ(v.v)\xi (v.v^\prime ) for orbital and radial ground states in the phenomenologically interesting range 1v.v41\leq v.v^ \prime \leq 4. We find a simple expression for the zero-recoil slope, ξ(1)=1/2ϵ2/3\xi^ \prime (1) =-1/2- \epsilon^2 /3, where ϵ\epsilon is the energy eigenvalue of the light quark, which can be identified with the Λˉ\bar\Lambda parameter of the Heavy Quark Effective Theory. This result implies an upper bound of 1/2-1/2 for the slope ξ(1)\xi^\prime (1). Also, because for a very light quark q(q=u,d)q (q=u, d) the size \sqrt {} of the meson is determined mainly by the ``confining'' term in the potential (γσr)(\gamma_\circ \sigma r), the shape of ξu,d(v.v)\xi_{u,d}(v.v^\prime ) is seen to be mostly sensitive to the dimensionless ratio Λˉu,d2/σ\bar \Lambda_{u,d}^2/\sigma. We present results for the ranges of parameters 150MeV<Λˉu,d<600MeV150 MeV <\bar \Lambda_{u,d} <600 MeV (ΛˉsΛˉu,d+100MeV)(\bar\Lambda_s \approx \bar\Lambda_{u,d}+100 MeV), 0.14GeV2σ0.25GeV20.14 {GeV}^2 \leq \sigma \leq 0.25 {GeV}^2 and light quark masses mu,md0,ms=175MeVm_u, m_d \approx 0, m_s=175 MeV and compare to existing experimental data and other theoretical estimates. Fits to the data give: Λˉu,d2/σ=4.8±1.7{\bar\Lambda_{u,d}}^2/\sigma =4.8\pm 1.7 , ξu,d(1)=2.4±0.7-\xi^\prime_{u,d}(1)=2.4\pm 0.7 and VcbτB1.48ps=0.050±0.008\vert V_{cb} \vert \sqrt {\frac {\tau_B}{1.48 ps}}=0.050\pm 0.008 [ARGUS '93]; Λˉu,d2/σ=3.4±1.8{\bar\Lambda_{u,d}}^2/\sigma = 3.4\pm 1.8, ξu,d(1)=1.8±0.7-\xi^\prime_{u,d}(1)=1.8\pm 0.7 and VcbτB1.48ps=0.043±0.008\vert V_{cb} \vert \sqrt { \frac {\tau_B}{1.48 ps}}=0.043\pm 0.008 [CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via email upon reques

    Clusters in weighted macroeconomic networks : the EU case. Introducing the overlapping index of GDP/capita fluctuation correlations

    Full text link
    GDP/capita correlations are investigated in various time windows (TW), for the time interval 1990-2005. The target group of countries is the set of 25 EU members, 15 till 2004 plus the 10 countries which joined EU later on. The TW-means of the statistical correlation coefficients are taken as the weights (links) of a fully connected network having the countries as nodes. Thereafter we define and introduce the overlapping index of weighted network nodes. A cluster structure of EU countries is derived from the statistically relevant eigenvalues and eigenvectors of the adjacency matrix. This may be considered to yield some information about the structure, stability and evolution of the EU country clusters in a macroeconomic sense.Comment: 6 pages, 8 figures, 1 table, 17 references, submitted to Physica A; proceedings of APFA

    Superstrings and D-branes in A Plane Wave

    Full text link
    We carefully analyze the supersymmetry algebra of closed strings and open strings in a type IIB plane wave background. We use eight component chiral spinors, SO(8) Majorana-Weyl spinors, in light-cone gauge to provide a useful basis of string field theory calculation in the plane wave. We consider the two classes of D-branes, D±D_\pm-branes, and give a worldsheet derivation of conserved supercurrents for all half BPS D-branes preserving 16 supersymmetries in the type IIB plane wave background. We exhaustively provide the supersymmetry algebra of the half BPS branes as well. We also point out that the supersymmetry algebra distinguishes the two SO(4) directions with relative sign which is consistent with the Z_2 symmetry of the string action.Comment: v4: 28 pages, Latex, Worldsheet derivation of conserved supercurrents for all half BPS D-branes newly added, improved presentation and typo
    corecore