1,437 research outputs found
Geometric creation of quantum vorticity
We consider superfluidity and quantum vorticity in rotating spacetimes. The
system is described by a complex scalar satisfying a nonlinear Klein-Gordon equation.
Rotation terms are identified and found to lead to the transfer of angular momentum of
the spacetime to the scalar field. The scalar field responds by rotating, physically behaving
as a superfluid, through the creation of quantized vortices. We demonstrate the vortex
nucleation through numerical simulatio
Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation
We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime.The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the non-relativistic nonlinear Schr¨odinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gase
Some FRW Models of Accelerating Universe with Dark Energy
The paper deals with a spatially homogeneous and isotropic FRW space-time
filled with perfect fluid and dark energy components. The two sources are
assumed to interact minimally, and therefore their energy momentum tensors are
conserved separately. A special law of variation for the Hubble parameter
proposed by Berman (1983) has been utilized to solve the field equations. The
Berman's law yields two explicit forms of the scale factor governing the FRW
space-time and constant values of deceleration parameter. The role of dark
energy with variable equation of state parameter has been studied in detail in
the evolution of FRW universe. It has been found that dark energy dominates the
universe at the present epoch, which is consistent with the observations. The
physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure
The pressure of hot QCD up to g^6 ln(1/g)
The free energy density, or pressure, of QCD has at high temperatures an
expansion in the coupling constant g, known so far up to order g^5. We compute
here the last contribution which can be determined perturbatively, g^6 ln(1/g),
by summing together results for the 4-loop vacuum energy densities of two
different three-dimensional effective field theories. We also demonstrate that
the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed
together with the so far unknown perturbative and non-perturbative g^6 terms,
could potentially extend the applicability of the coupling constant series down
to surprisingly low temperatures.Comment: 18 pages. Small clarifications added. To appear in Phys.Rev.
Effect of a Physical Phase Plate on Contrast Transfer in an Aberration-Corrected Transmission Electron Microscope
In this theoretical study we analyze contrast transfer of weak-phase objects
in a transmission electron microscope, which is equipped with an aberration
corrector (Cs-corrector) in the imaging lens system and a physical phase plate
in the back focal plane of the objective lens. For a phase shift of pi/2
between scattered and unscattered electrons induced by a physical phase plate,
the sine-type phase contrast transfer function is converted into a cosine-type
function. Optimal imaging conditions could theoretically be achieved if the
phase shifts caused by the objective lens defocus and lens aberrations would be
equal zero. In reality this situation is difficult to realize because of
residual aberrations and varying, non-zero local defocus values, which in
general result from an uneven sample surface topography. We explore the
conditions - i.e. range of Cs-values and defocus - for most favourable contrast
transfer as a function of the information limit, which is only limited by the
effect of partial coherence of the electron wave in Cs-corrected transmission
electron microscopes. Under high-resolution operation conditions we find that a
physical phase plate improves strongly low- and medium-resolution object
contrast, while improving tolerance to defocus and Cs-variations, compared to a
microscope without a phase plate
Generalized Holographic Dark Energy Model
In this paper, the model of holographic Chaplygin gas has been extended to
two general cases: first is the case of modified variable Chaplygin gas and
secondly of the viscous generalized Chaplygin gas. The dynamics of the model
are expressed by the use of scalar fields and the scalar potentials.Comment: 12 pages, to appear in Eur. Phys. J.
The future of social is personal: the potential of the personal data store
This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges
The Isgur-Wise function in a relativistic model for system
We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz
scalar) linear '' potential to estimate the light quark wavefunction for mesons in the limit . We use these wavefunctions to
calculate the Isgur-Wise function for orbital and radial
ground states in the phenomenologically interesting range . We find a simple expression for the zero-recoil slope, , where is the energy eigenvalue
of the light quark, which can be identified with the parameter
of the Heavy Quark Effective Theory. This result implies an upper bound of
for the slope . Also, because for a very light quark the size of the meson is determined mainly by the
``confining'' term in the potential , the shape of
is seen to be mostly sensitive to the dimensionless
ratio . We present results for the ranges of
parameters , and
light quark masses and compare to existing
experimental data and other theoretical estimates. Fits to the data give:
,
and [ARGUS
'93]; , and
[CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via
email upon reques
Clusters in weighted macroeconomic networks : the EU case. Introducing the overlapping index of GDP/capita fluctuation correlations
GDP/capita correlations are investigated in various time windows (TW), for
the time interval 1990-2005. The target group of countries is the set of 25 EU
members, 15 till 2004 plus the 10 countries which joined EU later on. The
TW-means of the statistical correlation coefficients are taken as the weights
(links) of a fully connected network having the countries as nodes. Thereafter
we define and introduce the overlapping index of weighted network nodes. A
cluster structure of EU countries is derived from the statistically relevant
eigenvalues and eigenvectors of the adjacency matrix. This may be considered to
yield some information about the structure, stability and evolution of the EU
country clusters in a macroeconomic sense.Comment: 6 pages, 8 figures, 1 table, 17 references, submitted to Physica A;
proceedings of APFA
Superstrings and D-branes in A Plane Wave
We carefully analyze the supersymmetry algebra of closed strings and open
strings in a type IIB plane wave background. We use eight component chiral
spinors, SO(8) Majorana-Weyl spinors, in light-cone gauge to provide a useful
basis of string field theory calculation in the plane wave. We consider the two
classes of D-branes, -branes, and give a worldsheet derivation of
conserved supercurrents for all half BPS D-branes preserving 16 supersymmetries
in the type IIB plane wave background. We exhaustively provide the
supersymmetry algebra of the half BPS branes as well. We also point out that
the supersymmetry algebra distinguishes the two SO(4) directions with relative
sign which is consistent with the Z_2 symmetry of the string action.Comment: v4: 28 pages, Latex, Worldsheet derivation of conserved supercurrents
for all half BPS D-branes newly added, improved presentation and typo
- …
