11 research outputs found
The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters
Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator
with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal
clusters, as well as to theoretical predictions of jellium models, Woods--Saxon
and wine bottle potentials, and to the classification scheme using the 3n+l
pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator
correctly predicts all experimentally observed magic numbers up to 1500 (which
is the expected limit of validity for theories based on the filling of
electronic shells), thus indicating that Uq(3), which is a nonlinear extension
of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic
oscillator, is a good candidate for being the symmetry of systems of alkali
metal clusters.Comment: 13 pages, LaTe
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
The Physical Processes of CME/ICME Evolution
As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe
Induced representations of U_q(so(3)) with subrepresentations of integer spin only
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections
Coronal mass ejections (CMEs) are the main drivers of geomagnetic
disturbances, but the effects of their interaction with Earth's magnetic field
depend on their magnetic configuration and orientation. Fitting and
reconstruction techniques have been developed to determine the important
geometrical and physical CME properties. In many instances, there is
disagreement between such different methods but also between fitting from in
situ measurements and reconstruction based on remote imaging. Here, we compare
three methods based on different assumptions for measurements of thirteen CMEs
by the Wind spacecraft from 1997 to 2015. These CMEs are selected from the
interplanetary coronal mass ejections catalog on
https://wind.nasa.gov/ICMEindex.php due to their simplicity in terms of 1)
small expansion speed throughout the CME and 2) little asymmetry in the
magnetic field profile. This makes these thirteen events ideal candidates to
compare codes that do not include expansion nor distortion. We find that, for
these simple events, the codes are in relatively good agreement in terms of the
CME axis orientation for six out of the 13 events. Using the Grad-Shafranov
technique, we can determine the shape of the cross-section, which is assumed to
be circular for the other two models, a force-free fitting and a
circular-cylindrical non-force-free fitting. Five of the events are found to
have a clear circular cross-section, even when this is not a pre-condition of
the reconstruction. We make an initial attempt at evaluating the adequacy of
the different assumptions for these simple CMEs. The conclusion of this work
strongly suggests that attempts at reconciling in situ and remote-sensing views
of CMEs must take in consideration the compatibility of the different models
with specific CME structures to better reproduce flux ropes.Comment: 12 pages, accepted to Solar Physic
Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections
Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earth’s magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine important geometrical and physical CME properties, such as the orientation of the CME axis, the CME size, and its magnetic flux. In many instances, there is disagreement between different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. This could be due to the geometrical or physical assumptions of the models, but also to the fact that the magnetic field inside CMEs is only measured at one point in space as the CME passes over a spacecraft. In this article we compare three methods that are based on different assumptions for measurements by the Wind spacecraft for 13 CMEs from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php because of their simplicity in terms of: 1) slow expansion speed throughout the CME and 2) weak asymmetry in the magnetic field profile. This makes these 13 events ideal candidates for comparing codes that do not include expansion or distortion. We find that for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six of the 13 events. Using the Grad–Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular–cylindrical non force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a precondition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts at reconciling in situ and remote-sensing views of CMEs must take into consideration the compatibility of the different models with specific CME structures to better reproduce flux ropes
Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections
This study aims to provide a reference for different magnetic field models and reconstruction methods for interplanetary coronal mass ejections (ICMEs). To understand the differences in the outputs of these models and codes, we analyzed 59 events from the Coordinated Data Analysis Workshop (CDAW) list, using four different magnetic field models and reconstruction techniques; force-free fitting, magnetostatic reconstruction using a numerical solution to the Grad–Shafranov equation, fitting to a self-similarly expanding cylindrical configuration and elliptical, non-force-free fitting. The resulting parameters of the reconstructions for the 59 events are compared statistically and in selected case studies. The ability of a method to fit or reconstruct an event is found to vary greatly; this depends on whether the event is a magnetic cloud or not. We find that the magnitude of the axial field is relatively consistent across models, but that the axis orientation of the ejecta is not. We also find that there are a few cases with different signs of the magnetic helicity for the same event when we leave the boundaries free to vary, which illustrates that this simplest of parameters is not necessarily always clearly constrained by fitting and reconstruction models. Finally, we examine three unique cases in depth to provide a comprehensive idea of the different aspects of how the fitting and reconstruction codes work
Solar Weather Event Modelling and Prediction
Key drivers of solar weather and mid-term solar weather are reviewed by considering
a selection of relevant physics- and statistics-based scientific models as well as aselection of related prediction models, in order to provide an updated operational scenario
for space weather applications. The characteristics and outcomes of the considered scientific
and prediction models indicate that they only partially cope with the complex nature of solar
activity for the lack of a detailed knowledge of the underlying physics. This is indicated by
the fact that, on one hand, scientific models based on chaos theory and non-linear dynamics
reproduce better the observed features, and, on the other hand, that prediction models
based on statistics and artificial neural networks perform better. To date, the solar weather
prediction success at most time and spatial scales is far from being satisfactory, but the forthcoming
ground- and space-based high-resolution observations can add fundamental tiles to
the modelling and predicting frameworks as well as the application of advanced mathematical
approaches in the analysis of diachronic solar observations, that are a must to provide
comprehensive and homogeneous data sets.peerReviewe