33 research outputs found

    Studies of Neutron Stars at Optical/IR Wavelengths

    Get PDF
    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found for 5 magnetars and for 4 INSs. In this work we present some of the latest observational results obtained from optical/IR observations of different types of INSs

    An Optical Counterpart Candidate for the Isolated Neutron Star RBS 1774

    Get PDF
    Multiwavelength studies of the seven identified X-ray-dim isolated neutron stars (XDINSs) offer a unique opportunity to investigate their surface thermal and magnetic structure and the matter-radiation interaction in presence of strong gravitational and magnetic fields. As a part of an ongoing campaign aimed at a complete identification and spectral characterization of XDINSs in the optical band, we performed deep imaging with the ESO Very Large Telescope (VLT) of the field of the XDINS RBS 1774 (1RXS J214303.7 +065419). The recently upgraded FORS1 instrument mounted on the VLT provided the very first detection of a candidate optical counterpart in the B band. The identification is based on a very good positional coincidence with the X-ray source (chance probability ~2 7 10 123). The source has B = 27.4 \ub1 0.2 (1 \u3c3 confidence level), and the optical flux exceeds the extrapolation of the X-ray blackbody at optical wavelengths by a factor ~35 (\ub120 at 3 \u3c3 confidence level). This is barely compatible with thermal emission from the neutron star surface, unless the source distance is d 200\u2013300 pc, and the star is an almost aligned rotator or its spin axis is nearly aligned with the line of sight. At the same time, such a large optical excess appears difficult to reconcile with rotation-powered magnetospheric emission, unless the source has an extremely large optical emission efficiency. The implications and possible similarities with the optical spectra of other isolated NSs are discussed

    Optical spectroscopy of the radio pulsar PSR B0656+14

    Full text link
    We have obtained the spectrum of a middle-aged PSR B0656+14 in the 4300-9000 AA range with the ESO/VLT/FORS2. Preliminary results show that at 4600-7000 AA the spectrum is almost featureless and flat with a spectral index $\alpha_nu ~ -0.2 that undergoes a change to a positive value at longer wavelengths. Combining with available multiwavelength data suggests two wide, red and blue, flux depressions whose frequency ratio is about 2 and which could be the 1st and 2nd harmonics of electron/positron cyclotron absorption formed at magnetic fields ~10^8G in upper magnetosphere of the pulsar.Comment: 4 pages, 4 figures, To appear in Astrophysics and Space Science, Proceedings of "Isolated Neutron Stars: from the Interior to the Surface", eds. D. Page, R. Turolla and S. Zan

    The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

    Full text link
    With a view to understanding the formation of double neutron-stars (DNS), we investigate the late stages of evolution of helium stars with masses of 2.8 - 6.4 Msun in binary systems with a 1.4 Msun neutron-star companion. We found that mass transfer from 2.8 - 3.3 Msun helium stars and from 3.3 - 3.8 Msun in very close orbits (P_orb > 0.25d) will end up in a common-envelope (CE) and spiral-in phase due to the development of a convective helium envelope. If the neutron star has sufficient time to complete the spiraling-in process before the core collapses, the system will produce very tight DNSs (P_orb ~ 0.01d) with a merger timescale of the order of 1 Myr or less. These systems would have important consequences for the detection rate of GWR and for the understanding of GRB progenitors. On the other hand, if the time left until the explosion is shorter than the orbital-decay timescale, the system will undergo a SN explosion during the CE phase. Helium stars with masses 3.3 - 3.8 Msun in wider orbits (P_orb > 0.25d) and those more massive than 3.8 Msun do not go through CE evolution. The remnants of these massive helium stars are DNSs with periods in the range of 0.1 - 1 d. This suggests that this range of mass includes the progenitors of the galactic DNSs with close orbits (B1913+16 and B1534+12). A minimum kick velocity of 70 km/s and 0 km/s (for B1913+16 and B1534+12, respectively) must have been imparted at the birth of the pulsar's companion. The DNSs with wider orbits (J1518+4904 and probably J1811-1736) are produced from helium star-neutron star binaries which avoid RLOF, with the helium star more massive than 2.5 Msun. For these systems the minimum kick velocities are 50 km/s and 10 km/s (for J1518+4904 and J1811-1736, respectively).Comment: 16 pages, latex, 12 figures, accepted for publication in MNRA

    Internal heating and thermal emission from old neutron stars: Constraints on dense-matter and gravitational physics

    Get PDF
    The equilibrium composition of neutron star matter is achieved through weak interactions (direct and inverse beta decays), which proceed on relatively long time scales. If the density of a matter element is perturbed, it will relax to the new chemical equilibrium through non-equilibrium reactions, which produce entropy that is partly released through neutrino emission, while a similar fraction heats the matter and is eventually radiated as thermal photons. We examined two possible mechanisms causing such density perturbations: 1) the reduction in centrifugal force caused by spin-down (particularly in millisecond pulsars), leading to "rotochemical heating", and 2) a hypothetical time-variation of the gravitational constant, as predicted by some theories of gravity and current cosmological models, leading to "gravitochemical heating". If only slow weak interactions are allowed in the neutron star (modified Urca reactions, with or without Cooper pairing), rotochemical heating can account for the observed ultraviolet emission from the closest millisecond pulsar, PSR J0437-4715, which also provides a constraint on |dG/dt| of the same order as the best available in the literature.Comment: 6 pages, 7 figures. To appear in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", a conference held in London in April 2006 (special issue of Astrophysics and Space Science, edited by Dany Page, Roberto Turolla, & Silvia Zane

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Nucleonic gamma-ray production in Pulsar Wind Nebulae

    Get PDF
    Observations of the inner radian of the Galactic disk at very high energy (VHE) gamma-rays have revealed at least 16 new sources. Besides shell type super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source population in the catalogue of VHE gamma-ray sources. Except for the Crab nebula, the newly discovered PWN are resolved at VHE gamma-rays to be spatially extended (5-20 pc). Currently, at least 3 middle aged (t>10t>10 kyrs) PWN (Vela X, G18.0-0.7, and G313.3+0.6 in the ``Kookaburra'' region) and 1 young PWN MSH 15-5{\it2} (t=1.55t=1.55 kyrs) have been identified to be VHE emitting PWN (sometimes called ``TeV Plerions''). Two more candidate ``TeV Plerions'' have been identifed and have been reported at this conference [1]. In this contribution, the gamma-ray emission from Vela X is explained by a nucleonic component in the pulsar wind. The measured broad band spectral energy distribution is compared with the expected X-ray emission from primary and secondary electrons. The observed X-ray emission and TeV emission from the three middle aged PWN are compared with each other.Comment: 6 pages, 3 figures, to appear in proceedings "The Multi-Messenger Approach to High-Energy Gamma-Ray Sources", Barcelona July 200
    corecore