155 research outputs found
Security Evaluation of Support Vector Machines in Adversarial Environments
Support Vector Machines (SVMs) are among the most popular classification
techniques adopted in security applications like malware detection, intrusion
detection, and spam filtering. However, if SVMs are to be incorporated in
real-world security systems, they must be able to cope with attack patterns
that can either mislead the learning algorithm (poisoning), evade detection
(evasion), or gain information about their internal parameters (privacy
breaches). The main contributions of this chapter are twofold. First, we
introduce a formal general framework for the empirical evaluation of the
security of machine-learning systems. Second, according to our framework, we
demonstrate the feasibility of evasion, poisoning and privacy attacks against
SVMs in real-world security problems. For each attack technique, we evaluate
its impact and discuss whether (and how) it can be countered through an
adversary-aware design of SVMs. Our experiments are easily reproducible thanks
to open-source code that we have made available, together with all the employed
datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector
Machine Applications
Microfluidic analysis techniques for safety assessment of pharmaceutical nano- and microsystems
This chapter reviews the evolution of microfabrication methods and materials, applicable to manufacturing of micro total analysis systems (or labâonâaâchip), from a general perspective. It discusses the possibilities and limitations associated with microfluidic cell culturing, or so called organâonâaâchip technology, together with selected examples of their exploitation to characterization of pharmaceutical nanoâ and microsystems. Materials selection plays a pivotal role in terms of ensuring the cell adhesion and viability as well as defining the prevailing culture conditions inside the microfluidic channels. The chapter focuses on the hepatic safety assessment of nanoparticles and gives an overview of the development of microfluidic immobilized enzyme reactors that could facilitate examination of the hepatic effects of nanomedicines under physiologically relevant conditions. It also provides an overview of the future prospects regarding systemâlevel integration possibilities facilitated by microfabrication of miniaturized separation and sample preparation systems as integral parts of microfluidic in vitro models.Non peer reviewe
- âŠ