22 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Composition and natural history of a Cerrado snake assemblage at Itirapina, São Paulo state, southeastern Brazil

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Reptiles of the municipality of Juiz de Fora, Minas Gerais state, Brazil

    Full text link

    Efeitos do modo ventilatório sobre variáveis hemogasométricas em equinos submetidos à mudança de decúbito durante a anestesia geral inalatória com halotano

    No full text
    Compararam-se os efeitos da ventilação espontânea (V E) e controlada (V C) em equinos submetidos à mudança de decúbito durante anestesia. Dezesseis animais foram equitativamente divididos em dois grupos: V E e V C. Os procedimentos cirúrgicos foram iniciados com os animais em decúbito lateral esquerdo (DLE) e, após 75 minutos, os animais foram reposicionados em decúbito lateral direito (DLD). Análises hemogasométricas do sangue arterial foram realizadas após 30 e 75 minutos com os animais posicionados em cada decúbito (M1 e M2 no DLE e M3 e M4 no DLD, respectivamente). Durante a V E, observaram-se hipercapnia (PaCO2 >45mmHg), acidose respiratória (pH 45mmHg), respiratory acidosis (pH <7.35), and significant decrease in PaO2 after 75min of change in body position (M4: 205.8±124.7mmHg) in comparison to PaO2 values before the change of position (M1: 271.8±84.8mmHg) were observed during SV. When compared to the SV group, CV resulted in significantly higher PaO2 levels (52 to 96% increase). It was concluded that the change in the body position in spontaneously ventilating halothane-anesthetized horses causes impairment in arterial oxygenation. The use of CV since the beginning of anesthesia prevents the respiratory acidosis and maintains arterial oxygen levels that are closer to values expected during the use of 100% O2
    corecore