23 research outputs found

    Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    Get PDF
    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (Isp-850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately equal 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible, A family of modular "bimodal" NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, "zero-boiloff" liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR/ERV. It also allows the crew to travel to and from Mar on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixutre ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the lift capability of two Magnum launches

    Energy and Climate Implications for Agricultural Nutrient Use Efficiency

    Get PDF
    Energy and climate change are beginning to dominate the global political agenda and will drive policy formation that will shape the future of agriculture. Energy issues threaten national security and economic stability, as well as access to low-cost nutrient inputs for agriculture. Climate change has the potential to cause serious disruption to agricultural productivity. Paradoxically, nutrient use in agriculture to increase crop yields has the potential to negatively impact climate. This chapter will discuss recent and future energy and climate trends, the relationships between agricultural nutrient use efficiency and biofuels, and how global land limitations will shape agriculture in the future. Comparative gross energy yield and nitrogen use efficiency for ethanol production from crop residue, switchgrass, grain sorghum, sweet sorghum, and corn grain is presented, showing small differences in nitrogen use efficiency, but large differences in gross energy yields. In addition to considering the need to increase crop productivity to meet the demands of a growing population and bioenergy, agricultural nutrient use efficiency must be reconsidered with respect to the important energy and climate challenges shaping agriculture today

    Trajectory Options for Manned Mars Missions

    No full text

    Laboratory Simulation of Magnetoplasma Sail

    No full text

    Scale-Model Experiment of Magnetoplasma Sail : Preliminary Results

    No full text

    Laboratory Experiment of Plasma Flow Around Magnetic Sail

    No full text

    Kinetic Simulations/Modeling of Plasma Sails

    No full text

    The Plasma Magnet

    No full text

    The Dynamic Behavior of Magnetic Sails in Laboratory

    No full text
    corecore