3 research outputs found

    Influence Of The Strong Magnetocrystalline Anisotropy On The Magnetocaloric Properties Of Mnp Single Crystal

    No full text
    Manganese monophosphate MnP single crystal deserves attention due to its rich magnetic phase diagram, which is quite different depending on the direction of the applied magnetic field. Generally speaking, it has a Curie temperature around 291 K and several other magnetic arrangements at low temperatures (cone-, screw-, fan-, and ferromagnetic-type structures). This richness is due to the strong magnetocrystalline anisotropy. In this sense, the present paper makes a thorough description of the influence of this anisotropy on the magnetocaloric properties of this material. From a fundamental view we could point out, among those several magnetic arrangements, the most stable one. On the other hand, from an applied view, we could show that the magnetic entropy change around room temperature ranges from -4.7 to -3.2 J kg K, when the magnetic field (5 T) is applied along the easy and hard magnetization directions, respectively. In addition, we have shown that it is also possible to take advantage of the magnetic anisotropy for magnetocaloric applications, i.e., we have found a quite flat magnetic entropy change (with a huge relative cooling power), at a fixed value of magnetic field, only rotating the crystal by 90°. © 2008 The American Physical Society.7710Warburg, E., (1881) Ann. Phys., 13, p. 141. , ANPYA2 0003-3804 10.1002/andp.18030130204Reis, M.S., Amaral, V.S., Araújo, J.P., Tavares, P.B., Gomes, A.M., Oliveira, I.S., (2005) Phys. Rev. B, 71, p. 144413. , PRBMDO 0163-1829 10.1103/PhysRevB.71.144413Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K., (2003) Phys. Rev. B, 67, p. 104416. , PRBMDO 0163-1829 10.1103/PhysRevB.67.104416Fujita, A., Fujieda, S., Fukamichi, K., Mitamura, H., Goto, T., (2001) Phys. Rev. B, 65, p. 014410. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014410Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4494Choe, W., Pecharsky, V.K., Pecharsky, A.O., Gschneidner, K.A., Young, V.G., Miller, G.J., (2000) Phys. Rev. Lett., 84, p. 4617. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4617Pecharsky, V.K., Holm, A.P., Gschneidner, K.A., Rink, R., (2003) Phys. Rev. Lett., 91, p. 197204. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.197204Wang, D., Liu, H., Tang, S., Yang, S., Huang, S., Du, Y., (2002) Phys. Lett. a, 297, p. 247. , PYLAAG 0375-9601 10.1016/S0375-9601(02)00159-7De Oliveira, N.A., Von Ranke, P.J., Troper, A., (2004) Phys. Rev. B, 69, p. 064421. , PRBMDO 0163-1829 10.1103/PhysRevB.69.064421Von Ranke, P.J., Nóbrega, E.P., De Oliveira, I.G., Gomes, A.M., Sarthour, R.S., (2001) Phys. Rev. B, 63, p. 184406. , PRBMDO 0163-1829 10.1103/PhysRevB.63.184406Gomes, A., Reis, M., Oliveira, I., Guimaraes, A., Takeuchi, A., (2002) J. Magn. Magn. Mater., 242, p. 870. , JMMMDC 0304-8853Morelli, D., Mance, A., Mantese, J., Micheli, A., (1996) J. Appl. Phys., 79, p. 373. , JAPIAU 0021-8979 10.1063/1.360840Chen, H., Lin, C., Dai, D., (2003) J. Magn. Magn. Mater., 257, p. 254. , JMMMDC 0304-8853Xia Hu, F., Gen Shen, B., Rong Sun, J., (2000) Appl. Phys. Lett., 76, p. 3460. , APPLAB 0003-6951 10.1063/1.126677Zhou, X., Li, W., Kunkel, H., Williams, G., (2004) J. Phys.: Condens. Matter, 16, p. 39. , JCOMEL 0953-8984 10.1088/0953-8984/16/6/L02Tegus, O., Brück, E., Zhang, L., Dagula, Buschow, K., Deboer, F., (2002) Physica B, 319, p. 174. , PHYBE3 0921-4526 10.1016/S0921-4526(02)01119-5Rocco, D., Campos, A., Carvalho, A., Caron, L., Von Ranke, P., Oliveira, N., (2007) Appl. Phys. Lett., 90, p. 242507. , APPLAB 0003-6951 10.1063/1.2746074Campos, A., Rocco, D., Carvalho, A., Caron, L., Coelho, A., Gama, S., Silva, L., Oliveira, N.A., (2006) Nat. Mater., 5, p. 802. , NMAACR 1476-1122 10.1038/nmat1732Gama, S., Coelho, A.A., De Campos, A., Carvalho, A.M., Gandra, F.C.G., Von Ranke, P.J., De Oliveira, N.A., (2004) Phys. Rev. Lett., 93, p. 237202. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.237202Von Ranke, P.J., Gama, S., Coelho, A.A., Campos, A., Carvalho, A.M., Gandra, F.C.G., De Oliveira, N.A., (2006) Phys. Rev. B, 73, p. 014415. , PRBMDO 0163-1829 10.1103/PhysRevB.73.014415Fakidov, I., Krasovskii, V., (1959) Sov. Phys. JETP, 9, p. 755. , SPHJAR 0038-5646Mihalik, M., Sechovsky, V., (2007) J. Magn. Magn. Mater., 310, p. 1758. , JMMMDC 0304-8853Von Ranke, P., Oliveira, N., Sousa, V., Garcia, D., Oliveira, I., Carvalho, A., Gama, S., (2007) J. Magn. Magn. Mater., 313, p. 176. , JMMMDC 0304-8853Von Ranke, P., Oliveira, N., Mello, C., Garcia, D., Sousa, V., Souza, V., Caldas, A., Oliveira, I., (2007) J. Alloys Compd., 440, p. 46. , JALCEU 0925-8388Zou, M., Mudryk, Y., Pecharsky, V.K., Gschneidner, K.A., Schlagel, D.L., Lograsso, T.A., (2007) Phys. Rev. B, 75, p. 024418. , PRBMDO 0163-1829 10.1103/PhysRevB.75.024418Von Ranke, P.J., De Oliveira, N.A., Garcia, D.C., De Sousa, V.S.R., De Souza, V.A., Carvalho, A.M., Gama, S., Reis, M.S., (2007) Phys. Rev. B, 75, p. 184420. , PRBMDO 0163-1829 10.1103/PhysRevB.75.184420Becerra, C.C., Bindilatti, V., Oliveira, N.F., (2000) Phys. Rev. B, 62, p. 8965. , PRBMDO 0163-1829 10.1103/PhysRevB.62.8965Huber, E.E., Ridgley, D.H., (1964) Phys. Rev., 135, p. 1033. , PRVAAH 0096-8250 10.1103/PhysRev.135.A1033Komatsubara, T., Shinohara, H., Suzuki, T., Hirahara, E., (1969) J. Appl. Phys., 40, p. 1037. , JAPIAU 0021-8979 10.1063/1.1657521Becerra, C.C., Brumatto, H.J., Oliveira, N.F., (1996) Phys. Rev. B, 54, p. 15997. , PRBMDO 0163-1829 10.1103/PhysRevB.54.15997Shapira, Y., Becerra, C.C., Oliveira, N.F., Chang, T.S., (1981) Phys. Rev. B, 24, p. 2780. , PRBMDO 0163-1829 10.1103/PhysRevB.24.2780Zieba, A., Becerra, C.C., Fjellvag, H., Oliveira, N.F., Kjekshus, A., (1992) Phys. Rev. B, 46, p. 3380. , PRBMDO 0163-1829 10.1103/PhysRevB.46.3380Todate, Y., Yamada, K., Endoh, Y., Ishikawa, Y., (1987) J. Phys. Soc. Jpn., 56, p. 36. , JUPSAU 0031-9015 10.1143/JPSJ.56.36Aharoni, A., (1998) J. Appl. Phys., 83, p. 3432. , JAPIAU 0021-8979 10.1063/1.367113Amaral, J.S., Tishin, A., Spichkin, Y., (2003) The Magnetocaloric Effect and Its Applications, , Institute of Physics, BristolGschneidner, K., Pecharskyand, V., Tsokol, A., (2005) Rep. Prog. Phys., 68, p. 1479. , RPPHAG 0034-4885 10.1088/0034-4885/68/6/R0

    Incidence of factor VIII inhibitors throughout life in severe hemophilia A in the United Kingdom

    No full text
    The age-adjusted incidence of new factor VIII inhibitors was analyzed in all United Kingdom patients with severe hemophilia A between 1990 and 2009. Three hundred fifteen new inhibitors were reported to the National Hemophilia Database in 2528 patients with severe hemophilia who were followed up for a median (interquartile range) of 12 (4-19) years. One hundred sixty (51%) of these arose in patients ≥ 5 years of age after a median (interquartile range) of 6 (4-11) years' follow-up. The incidence of new inhibitors was 64.29 per 1000 treatment-years in patients < 5 years of age and 5.31 per 1000 treatment-years at age 10-49 years, rising significantly (P = .01) to 10.49 per 1000 treatment-years in patients more than 60 years of age. Factor VIII inhibitors arise in patients with hemophilia A throughout life with a bimodal risk, being greatest in early childhood and in old age. HIV was associated with significantly fewer new inhibitors. The inhibitor incidence rate ratio in HIV-seropositive patients was 0.32 times that observed in HIV-seronegative patients (P < .001). Further study is required to explore the natural history of later-onset factor VIII inhibitors and to investigate other potential risk factors for inhibitor development in previously treated patients
    corecore