321 research outputs found

    An overview of Polaroid sun eyewear: Function, application and market

    Get PDF
    Patients are constantly looking for the newest technologies that will assist them in accomplishing the activities that they desire more comfortably and efficiently, in both their personal and professional lives. It is our responsibility as primary care practitioners to be current with the latest advancement in ophthalmic therapies, and effectively pass this knowledge on to our patients. This paper will encompass the properties of specialty protective sun eyewear, emphasizing polarized sunglasses, and how they can be incorporated into a private practice as a viable profit center. The intent is to provide the practitioner with a general overview of the basic properties of light and the history of polarized sunglasses and the functional benefits that they may offer consumers. This review will help to enable a practitioner to feel confident and more comfortable in prescribing and recommending these specialty performance lenses to their patients

    Modeling parasite dynamics on farmed salmon for precautionary conservation management of wild salmon

    Get PDF
    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March-June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    A Simple Model for the DNA Denaturation Transition

    Full text link
    We study pairs of interacting self-avoiding walks on the 3d simple cubic lattice. They have a common origin and are allowed to overlap only at the same monomer position along the chain. The latter overlaps are indeed favored by an energetic gain. This is inspired by a model introduced long ago by Poland and Sheraga [J. Chem. Phys. {\bf 45}, 1464 (1966)] for the denaturation transition in DNA where, however, self avoidance was not fully taken into account. For both models, there exists a temperature T_m above which the entropic advantage to open up overcomes the energy gained by forming tightly bound two-stranded structures. Numerical simulations of our model indicate that the transition is of first order (the energy density is discontinuous), but the analog of the surface tension vanishes and the scaling laws near the transition point are exactly those of a second order transition with crossover exponent \phi=1. Numerical and exact analytic results show that the transition is second order in modified models where the self-avoidance is partially or completely neglected.Comment: 29 pages, LaTeX, 20 postscript figure

    Electronic correlation in the infrared optical properties of the quasi two dimensional κ\kappa-type BEDT-TTF dimer system

    Get PDF
    The polarized optical reflectance spectra of the quasi two dimensional organic correlated electron system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]YY, Y=Y = Br and Cl are measured in the infrared region. The former shows the superconductivity at TcT_{\rm c} \simeq 11.6 K and the latter does the antiferromagnetic insulator transition at TNT_{\rm N} \simeq 28 K. Both the specific molecular vibration mode ν3(ag)\nu_{3}(a_{g}) of the BEDT-TTF molecule and the optical conductivity hump in the mid-infrared region change correlatively at TT^{*} \simeq 38 K of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, although no indication of TT^{*} but the insulating behaviour below TinsT_{\rm ins} \simeq 50-60 K are found in κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl. The results suggest that the electron-molecular vibration coupling on the ν3(ag)\nu_{3}(a_{g}) mode becomes weak due to the enhancement of the itinerant nature of the carriers on the dimer of the BEDT-TTF molecules below TT^{*}, while it does strong below TinsT_{\rm ins} because of the localized carriers on the dimer. These changes are in agreement with the reduction and the enhancement of the mid-infrared conductivity hump below TT^{*} and TinsT_{\rm ins}, respectively, which originates from the transitions between the upper and lower Mott-Hubbard bands. The present observations demonstrate that two different metallic states of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br are regarded as {\it a correlated good metal} below TT^{*} including the superconducting state and {\it a half filling bad metal} above TT^{*}. In contrast the insulating state of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl below TinsT_{\rm ins} is the Mott insulator.Comment: 8 pages, 7 figure

    Incoherent Interplane Conductivity of kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    Full text link
    The interplane optical spectrum of the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br was investigated in the frequency range from 40 to 40,000 cm-1. The optical conductivity was obtained by Kramers-Kronig analysis of the reflectance. The absence of a Drude peak at low frequency is consistent with incoherent conductivity but in apparent contradiction to the metallic temperature dependence of the DC resistivity. We set an upper limit to the interplane transfer integral of tb = 0.1 meV. A model of defect-assisted interplane transport can account for this discrepancy. We also assign the phonon lines in the conductivity to the asymmetric modes of the ET molecule.Comment: 7 pages with embedded figures, submitted to PR

    Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution

    Full text link
    Activated scaling is confirmed to hold in transverse field induced phase transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations have been made not just at the percolation threshold but well bellow and above it including the Griffiths-McCoy phase. A novel deactivation phenomena in the Griffiths-McCoy phase is observed using a thermal (in contrast to random) dilution of the system.Comment: 4 pages, 4 figures, RevTe

    Peatland pools are tightly coupled to the contemporary carbon cycle

    Get PDF
    Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2) and methane (CH4). The radiocarbon content (14C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14C and stable C (δ13C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2. Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%–75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export
    corecore