292 research outputs found
Convective Motion in a Vibrated Granular Layer
Experimental results are presented for a vertically shaken granular layer. In
the range of accelerations explored, the layer develops a convective motion in
the form of one or more rolls. The velocity of the grains near the wall has
been measured. It grows linearly with the acceleration, then the growing rate
slows down. A rescaling with the amplitude of the wall velocity and the height
of the granular layer makes all data collapse in a single curve. This can
provide insights on the mechanism driving the motion.Comment: 10 pages, 5 figures submitted to Phys. Rev. Let
Granular discharge and clogging for tilted hoppers
We measure the flux of spherical glass beads through a hole as a systematic
function of both tilt angle and hole diameter, for two different size beads.
The discharge increases with hole diameter in accord with the Beverloo relation
for both horizontal and vertical holes, but in the latter case with a larger
small-hole cutoff. For large holes the flux decreases linearly in cosine of the
tilt angle, vanishing smoothly somewhat below the angle of repose. For small
holes it vanishes abruptly at a smaller angle. The conditions for zero flux are
discussed in the context of a {\it clogging phase diagram} of flow state vs
tilt angle and ratio of hole to grain size
Dynamics and stress in gravity driven granular flow
We study, using simulations, the steady-state flow of dry sand driven by
gravity in two-dimensions. An investigation of the microscopic grain dynamics
reveals that grains remain separated but with a power-law distribution of
distances and times between collisions.
While there are large random grain velocities, many of these fluctuations are
correlated across the system and local rearrangements are very slow. Stresses
in the system are almost entirely transfered by collisions and the structure of
the stress tensor comes almost entirely from a bias in the directions in which
collisions occur.Comment: 4 pages, 3 eps figures, RevTe
Angle of repose and segregation in cohesive granular matter
We study the effect of fluids on the angle of repose and the segregation of
granular matter poured into a silo. The experiments are conducted in two
regimes where: (i) the volume fraction of the fluid is small and it forms
liquid bridges between particles, and (ii) the particles are completely
immersed in the fluid. The data is obtained by imaging the pile formed inside a
quasi-two dimensional silo through the transparent glass side walls. In the
first series of experiments, the angle of repose is observed to increase
sharply with the volume fraction of the fluid and then saturates at a value
that depends on the size of the particles. We systematically study the effect
of viscosity by using water-glycerol mixtures to vary it over at least three
orders of magnitude while keeping the surface tension almost constant. Besides
surface tension, the viscosity of the fluid is observed to have an effect on
the angle of repose and the extent of segregation. In case of bidisperse
particles, segregation is observed to decrease and finally saturate depending
on the size ratio of the particles and the viscosity of the fluid. The sharp
initial change and the subsequent saturation in the extent of segregation and
angle of repose occurs over similar volume fraction of the fluid. In the second
series of experiments, particles are poured into a container filled with a
fluid. Although the angle of repose is observed to be unchanged, segregation is
observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure
Unilateral interactions in granular packings: A model for the anisotropy modulus
Unilateral interparticle interactions have an effect on the elastic response
of granular materials due to the opening and closing of contacts during
quasi-static shear deformations. A simplified model is presented, for which
constitutive relations can be derived. For biaxial deformations the elastic
behavior in this model involves three independent elastic moduli: bulk, shear,
and anisotropy modulus. The bulk and the shear modulus, when scaled by the
contact density, are independent of the deformation. However, the magnitude of
the anisotropy modulus is proportional to the ratio between shear and
volumetric strain. Sufficiently far from the jamming transition, when
corrections due to non-affine motion become weak, the theoretical predictions
are qualitatively in agreement with simulation results.Comment: 6 pages, 5 figure
The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction
We study the one-dimensional Bose-Hubbard model using the Density-Matrix
Renormalization Group (DMRG).For the cases of on-site interactions and
additional nearest-neighbor interactions the phase boundaries of the
Mott-insulators and charge density wave phases are determined. We find a direct
phase transition between the charge density wave phase and the superfluid
phase, and no supersolid or normal phases. In the presence of nearest-neighbor
interaction the charge density wave phase is completely surrounded by a region
in which the effective interactions in the superfluid phase are repulsive. It
is known from Luttinger liquid theory that a single impurity causes the system
to be insulating if the effective interactions are repulsive, and that an even
bigger region of the superfluid phase is driven into a Bose-glass phase by any
finite quenched disorder. We determine the boundaries of both regions in the
phase diagram. The ac-conductivity in the superfluid phase in the attractive
and the repulsive region is calculated, and a big superfluid stiffness is found
in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure
On the existence of a Bose Metal at T=0
This paper aims to justify, at a microscopic level, the existence of a
two-dimensional Bose metal, i.e. a metallic phase made out of Cooper pairs at
T=0. To this end, we consider the physics of quantum phase fluctuations in
(granular) superconductors in the absence of disorder and emphasise the role of
two order parameters in the problem, viz. phase order and charge order. We
focus on the 2-d Bose Hubbard model in the limit of very large fillings, i.e. a
2-d array of Josephson junctions. We find that the algebra of phase
fluctuations is that of the Euclidean group in this limit, and show
that the model is equivalent to two coupled XY models in (2+1)-d, one
corresponding to the phase degrees of freedom, and the other the charge degrees
of freedom. The Bose metal, then, is the phase in which both these degrees of
freedom are disordered(as a result of quantum frustration). We analyse the
model in terms of its topological excitations and suggest that there is a
strong indication that this state represents a surface of critical points, akin
to the gapless spin liquid states. We find a remarkable consistency of this
scenario with certain low-T_c thin film experiments.Comment: 16 pages, 2 figure
Granular Solid Hydrodynamics
Granular elasticity, an elasticity theory useful for calculating static
stress distribution in granular media, is generalized to the dynamic case by
including the plastic contribution of the strain. A complete hydrodynamic
theory is derived based on the hypothesis that granular medium turns
transiently elastic when deformed. This theory includes both the true and the
granular temperatures, and employs a free energy expression that encapsulates a
full jamming phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. For the special case of stationary granular
temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity},
a state-of-the-art engineering model.Comment: 42 pages 3 fi
Cultural orientations and preference for HRM policies and practices:the case of Oman
This study empirically examines the influence of cultural orientations on employee preferences of human resource management (HRM) policies and practices in Oman. Data were collected from 712 employees working in six large Omani organizations. The findings indicate that there is a number of differences among Omani employees regarding value orientations due especially to age, education and work experience. The findings show a strong orientation towards mastery, harmony, thinking and doing, and a weak orientation towards hierarchy, collectivism, subjugation and human nature-as-evil. The results demonstrate a clear link between value orientations and preferences for particular HRM policies and practices. Group-oriented HRM practices are preferred by those who scored high on collectivism and being orientations, and those who scored low on thinking and doing orientations. Hierarchy-oriented HRM practices are preferred by those scoring high on hierarchy, subjugation and human nature-as-bad orientations, and those scoring low on thinking and mastery orientations. Finally, preference for loose and informal HRM practices was positively associated with being, and negatively associated with thinking, doing and harmony orientations. The theoretical and practical implications of these findings are discussed in detail
- …