105 research outputs found

    Exponential Time Complexity of Weighted Counting of Independent Sets

    Full text link
    We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x^k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph needs time 2^{\Omega(n)} and weighted counting of independent sets needs time 2^{\Omega(n/log^3 n)} for all rational weights x\neq 0. We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.Comment: Introduction revised, differences between versions of counting independent sets stated more precisely, minor improvements. 14 page

    Analysis of Generalized Grover's Quantum Search Algorithms Using Recursion Equations

    Full text link
    The recursion equation analysis of Grover's quantum search algorithm presented by Biham et al. [PRA 60, 2742 (1999)] is generalized. It is applied to the large class of Grover's type algorithms in which the Hadamard transform is replaced by any other unitary transformation and the phase inversion is replaced by a rotation by an arbitrary angle. The time evolution of the amplitudes of the marked and unmarked states, for any initial complex amplitude distribution is expressed using first order linear difference equations. These equations are solved exactly. The solution provides the number of iterations T after which the probability of finding a marked state upon measurement is the highest, as well as the value of this probability, P_max. Both T and P_max are found to depend on the averages and variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments.Comment: 8 pages, no figures. To appear in Phys. Rev.

    Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

    Full text link
    We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision linear optimization, proving new upper and lower complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding

    Vertex Cover Approximations: Experiments and Observations

    Full text link
    Abstract. The vertex cover problem is a classic NP-complete problem for which the best worst-case approximation ratio is roughly 2. In this paper, we use a col-lection of simple reductions, each of which guarantees an approximation ratio of 3 2, to find approximate vertex covers for a large collection of test graphs from various sources. We explain these reductions and explore the interaction between them. These reductions are extremely fast and even though they, by themselves are not guaranteed to find a vertex cover, we manage to find a 3/2-approximate vertex cover for every single graph in our large collection of test examples.

    New Polynomial Cases of the Weighted Efficient Domination Problem

    Full text link
    Let G be a finite undirected graph. A vertex dominates itself and all its neighbors in G. A vertex set D is an efficient dominating set (e.d. for short) of G if every vertex of G is dominated by exactly one vertex of D. The Efficient Domination (ED) problem, which asks for the existence of an e.d. in G, is known to be NP-complete even for very restricted graph classes. In particular, the ED problem remains NP-complete for 2P3-free graphs and thus for P7-free graphs. We show that the weighted version of the problem (abbreviated WED) is solvable in polynomial time on various subclasses of 2P3-free and P7-free graphs, including (P2+P4)-free graphs, P5-free graphs and other classes. Furthermore, we show that a minimum weight e.d. consisting only of vertices of degree at most 2 (if one exists) can be found in polynomial time. This contrasts with our NP-completeness result for the ED problem on planar bipartite graphs with maximum degree 3

    The Complexity of the Empire Colouring Problem

    Get PDF
    We investigate the computational complexity of the empire colouring problem (as defined by Percy Heawood in 1890) for maps containing empires formed by exactly r>1r > 1 countries each. We prove that the problem can be solved in polynomial time using ss colours on maps whose underlying adjacency graph has no induced subgraph of average degree larger than s/rs/r. However, if s3s \geq 3, the problem is NP-hard even if the graph is a forest of paths of arbitrary lengths (for any r2r \geq 2, provided s<2r(2r+1/4+3/2)s < 2r - \sqrt(2r + 1/4+ 3/2). Furthermore we obtain a complete characterization of the problem's complexity for the case when the input graph is a tree, whereas our result for arbitrary planar graphs fall just short of a similar dichotomy. Specifically, we prove that the empire colouring problem is NP-hard for trees, for any r2r \geq 2, if 3s2r13 \leq s \leq 2r-1 (and polynomial time solvable otherwise). For arbitrary planar graphs we prove NP-hardness if s<7s<7 for r=2r=2, and s<6r3s < 6r-3, for r3r \geq 3. The result for planar graphs also proves the NP-hardness of colouring with less than 7 colours graphs of thickness two and less than 6r36r-3 colours graphs of thickness r3r \geq 3.Comment: 23 pages, 12 figure

    A local 2-approximation algorithm for the vertex cover problem

    Get PDF
    We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.Peer reviewe

    Local search heuristics for the multidimensional assignment problem

    Get PDF
    The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s dimensions) is an extension of the well-known assignment problem. The most studied case of MAP is 3-AP, though the problems with larger values of s also have a large number of applications. We consider several known neighborhoods, generalize them and propose some new ones. The heuristics are evaluated both theoretically and experimentally and dominating algorithms are selected. We also demonstrate that a combination of two neighborhoods may yield a heuristics which is superior to both of its components
    corecore