8 research outputs found

    Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export

    Get PDF
    The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. METHODOLOGY/PRINCIPAL FINDINGS: To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas

    Simulation of ultrasonic beam propagation from phased arrays in anisotropic media using linearly phased multi-Gaussian beams

    No full text
    Phased array ultrasonic testing is widely used to test structures for flaws due to its ability to produce steered and focused beams. The inherent anisotropic nature of some materials, however, leads to skewing and distortion of the phased array beam and consequently measurement errors. To overcome this, a quantitative model of phased array beam propagation in such materials is required, so as to accurately model the skew and the distortion. The existing phased array beam models which are based on exact methods or numerical methods are computationally expensive or time consuming. This article proposes a modeling approach based on developing the linear phased multi-Gaussian beam (MGB) approach to model beam steering in anisotropic media. MGBs have the advantages of being computationally inexpensive and remaining non-singular. This article provides a comparison of the beam propagation modeled by the developed ordinary Gaussian beam and linear phased Gaussian beam models through transversely isotropic austenitic steel for different steering angles. It is shown that the linear phased Gaussian beam model outperforms the ordinary one, especially at steering angles higher than 20° in anisotropic solids. The proposed model allows us to model the beam propagation from phased arrays in both isotropic and anisotropic media in a way that is computationally inexpensive. As a further step, the developed model has been validated against a finite element model (FEM) computed using COMSOL Multiphysics.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Structural Integrity & Composite

    Fun stories about Brucella: the "furtive nasty bug".

    No full text
    &lt;p&gt;Although Brucella is responsible for one of the major worldwide zoonosis, our understanding of its pathogenesis remains in its infancy. In this paper, we summarize some of the research in progress in our laboratory that we think could contribute to a better understanding of the Brucella molecular virulence mechanisms and their regulation.&lt;/p&gt;</p

    Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export

    No full text
    The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. METHODOLOGY/PRINCIPAL FINDINGS: To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas
    corecore