36 research outputs found

    Simultaneous direct visualisation of liquid water in the cathode and anode serpentine flow channels of proton exchange membrane (PEM) fuel cells

    Get PDF
    Water flooding is detrimental to the performance of the proton exchange membrane fuel cell (PEMFC) and therefore it has to be addressed. To better understand how liquid water affects the fuel cell performance, direct visualisation of liquid water in the flow channels of a transparent PEMFC is performed under different operating conditions. Two high-resolution digital cameras were simultaneously used for recording and capturing the images at the anode and cathode flow channels. A new parameter extracted from the captured images, namely the wetted bend ratio, has been introduced as an indicator of the amount of liquid water present at the flow channel. This parameter, along with another previously used parameter (wetted area ratio), has been used to explain the variation in the fuel cell performance as the operating conditions of flow rates, operating pressure and relative humidity change. The results have shown that, except for hydrogen flow rate, the wetted bend ratio strongly linked to the operating condition of the fuel cell; namely: the wetted bend ratio was found to increase with decreasing air flow rate, increasing operating pressure and increasing relative humidity. Also, the status of liquid water at the anode was found to be similar to that at the cathode for most of the cases and therefore the water dynamics at the anode side can also be used to explain the relationships between the fuel cell performance and the investigated operating conditions

    Simultaneous thermal and visual imaging of liquid water of the PEM fuel cell flow channels

    Get PDF
    Water flooding and membrane dry-out are two major issues that could be very detrimental to the performance and/or durability of the proton exchange membrane (PEM) fuel cells. The above two phenomena are well-related to the distributions of and the interaction between the water saturation and temperature within the membrane electrode assembly (MEA). To obtain further insights into the relation between water saturation and temperature, the distributions of liquid water and temperature within a transparent PEM fuel cell have been imaged using high-resolution digital and thermal cameras. A parametric study, in which the air flow rate has been incrementally changed, has been conducted to explore the viability of the proposed experimental procedure to correlate the relation between the distribution of liquid water and temperature along the MEA of the fuel cell. The results have shown that, for the investigated fuel cell, more liquid water and more uniform temperature distribution along MEA at the cathode side are obtained as the air flow rate decreases. Further, the fuel cell performance was found to increase with decreasing air flow rate. All the above results have been discussed

    Electron transparent nanotubes reveal crystallization pathways in confinement

    Get PDF
    The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals in situ within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25–100 nm pores and anhydrite in 10 nm pores. The crystallization pathways are then studied by coating the membranes with an amorphous titania layer prior to mineralization to create electron transparent nanotubes that protect fragile precursor materials. By visualizing the evolutionary pathways of the crystals within the pores we show that the product single crystals derive from multiple nucleation events and that orientation is determined at early reaction times. Finally, the transformation of bassanite to gypsum within the membrane pores is studied using experiment and potential mean force calculations and is shown to proceed by localized dissolution/reprecipitation. This work provides insight into the effects of confinement on crystallization processes, which is relevant to mineral formation in many real-world environments

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Optimal LED-based illumination control via distributed convex optimization

    No full text
    Achieving illumination and energy consumption targets is essential in indoor lighting design. The provision of localized illumination to occupants, and the utilization of natural light and energy-efficient light-emitting diode (LED) luminaires can help meet both objectives. Localized illumination control schemes require suitable coordination mechanisms to obtain luminaire dimming levels that achieve the desired illuminance levels and reduce energy costs. This paper presents several distributed optimal LED-based illumination control schemes that provide localized illuminance to occupants. The lighting system consists of multiple LED-based luminaires, each of which has a controller that can process information locally and communicate with nearby controllers. The illuminance requirements and energy costs for the lighting system are expressed as a linear programming problem. This optimization problem is solved, in a distributed manner, across the network of controllers using local communication amongst the controllers. State-of-the-art distributed optimization methods, based on accelerated first-order methods, are applied to parallelize the computational tasks among multiple controllers. Important practical aspects such as the rate of convergence, computational complexity, and communication requirements are investigated via simulations

    Giant vesical calculus of 1125 grams in an Indian

    No full text

    Optimal LED-based illumination control via distributed convex optimization

    No full text
    Achieving illumination and energy consumption targets is essential in indoor lighting design. The provision of localized illumination to occupants, and the utilization of natural light and energy-efficient light-emitting diode (LED) luminaires can help meet both objectives. Localized illumination control schemes require suitable coordination mechanisms to obtain luminaire dimming levels that achieve the desired illuminance levels and reduce energy costs. This paper presents several distributed optimal LED-based illumination control schemes that provide localized illuminance to occupants. The lighting system consists of multiple LED-based luminaires, each of which has a controller that can process information locally and communicate with nearby controllers. The illuminance requirements and energy costs for the lighting system are expressed as a linear programming problem. This optimization problem is solved, in a distributed manner, across the network of controllers using local communication amongst the controllers. State-of-the-art distributed optimization methods, based on accelerated first-order methods, are applied to parallelize the computational tasks among multiple controllers. Important practical aspects such as the rate of convergence, computational complexity, and communication requirements are investigated via simulations

    MAMPs signatures, synergy, size and charge: influences on perception or mobility and host defence responses.

    No full text
    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidopsis of calcium influx and oxidative burst induced by non-saturating concentrations of bacterial MAMPs, used singly and in combination: flagellin peptide (flg22), elongation factor peptide (elf18), peptidoglycan (PGN) and component muropeptides, lipo-oligosaccharide (LOS) and core oligosaccharides. This revealed that some MAMPs have additive (e.g. flg22 with elf18) and even synergistic (flg22 and LOS) effects, whereas others mutually interfere (flg22 with OGA). OGA suppression of flg22-induced defences was not a result of the interference with the binding of flg22 to its receptor flagellin-sensitive 2 (FLS2). MAMPs induce different calcium influx signatures, but these are concentration dependent and unlikely to explain the differential induction of defence genes [pathogenesis-related gene 1 (PR1), plant defensin gene 1.2 (PDF1.2) and phenylalanine ammonia lyase gene 1 (PAL1)] by flg22, elf18 and OGA. The peptide MAMPs are potent elicitors at subnanomolar levels, whereas PGN and LOS at high concentrations induce low and late host responses. This difference might be a result of the restricted access by plant cell walls of MAMPs to their putative cellular receptors. flg22 is restricted by ionic effects, yet rapidly permeates a cell wall matrix, whereas LOS, which forms supramolecular aggregates, is severely constrained, presumably by molecular sieving. Thus, MAMPs can interact with each other, whether directly or indirectly, and with the host wall matrix. These phenomena, which have not been considered in detail previously, are likely to influence the speed, magnitude, versatility and composition of plant defences
    corecore