45 research outputs found

    Negative Affect-Associated USV Acoustic Characteristics Predict Future Excessive Alcohol Drinking and Alcohol Avoidance in Male P and NP Rats

    Get PDF
    BACKGROUND: Negative emotional status and adverse emotional events increase vulnerability to alcohol abuse. Ultrasonic vocalizations (USVs) emitted by rats are a well-established model of emotional status that can reflect positive or negative affective responses in real time. Most USV studies assess counts, yet each USV is a multidimensional data point characterized by several acoustic characteristics that may provide insight into the neurocircuitry underlying emotional response. METHODS: USVs emitted from selectively bred alcohol-naïve and alcohol-experienced alcohol-preferring and nonpreferring rats (P and NP rats) were recorded during 4-hour sessions on alternating days over 4 weeks. Linear mixed modeling (LMM) and linear discriminant analysis (LDA) were applied to USV acoustic characteristics (e.g., frequency, duration, power, and bandwidth) of negative affect (22 to 28 kilohertz [kHz])- and positive (50 to 55 kHz) affect-related USVs. RESULTS: Hundred percent separation between alcohol-naïve P and NP rats was achieved through a linear combination (produced by LDA) of USV acoustic characteristics of 22- to 28-kHz USVs, whereas poor separation (36.5%) was observed for 50- to 55-kHz USVs. 22- to 28-kHz LDA separation was high (87%) between alcohol-experienced P and NP rats, but was poor for 50- to 55-kHz USVs (57.3%). USV mean frequency and duration were the highest weighted characteristics in both the naïve and experienced 22- to 28-kHz LDA representations suggesting that alcohol experience does not alter the representations. LMM analyses of 22- to 28-kHz USV acoustic characteristics matched the LDA results. Poor LDA separation was observed between alcohol-naïve and alcohol-experienced P rats for both 22- to 28-kHz and 50- to 55-kHz USVs. CONCLUSIONS: Advanced statistical analysis of negative affect-associated USV data predicts future behaviors of excessive alcohol drinking and alcohol avoidance in selectively bred rats. USV characteristics across rat lines reveal affect-related motivation to consume alcohol and may predict neural pathways mediating emotional response. Further characterization of these differences could delineate particular neurocircuitry and methods to ameliorate dysregulated emotional states often observed in human alcohol abusers

    Hypersurface-Invariant Approach to Cosmological Perturbations

    Get PDF
    Using Hamilton-Jacobi theory, we develop a formalism for solving semi-classical cosmological perturbations which does not require an explicit choice of time-hypersurface. The Hamilton-Jacobi equation for gravity interacting with matter (either a scalar or dust field) is solved by making an Ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar perturbations are treated on an equal footing. Our technique encompasses linear perturbation theory and it also describes some mild nonlinear effects. As a concrete example of the method, we compute the galaxy-galaxy correlation function as well as large-angle microwave background fluctuations for power-law inflation, and we compare with recent observations.Comment: 51 pages, Latex 2.09 ALBERTA THY/20-94, DAMTP R94/25 To appear in Phys. Rev.

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm
    corecore