56 research outputs found

    Fracture model with variable range of interaction

    Full text link
    We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-transfer function which can interpolate between the two limiting cases of load redistribution, the global and the local load sharing schemes. By varying the range of interaction several features of the model are numerically studied and a crossover from mean field to short range behavior is obtained. The properties of the two regimes and the emergence of the crossover in between are explored by numerically studying the dependence of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately determine the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be published in Phys. Rev.

    Time evolution of damage under variable ranges of load transfer

    Full text link
    We study the time evolution of damage in a fiber bundle model in which the range of interaction of fibers varies through an adjustable stress transfer function recently introduced. We find that the lifetime of the material exhibits a crossover from mean field to short range behavior as in the static case. Numerical calculations showed that the value at which the transition takes place depends on the system's disorder. Finally, we have performed a microscopic analysis of the failure process. Our results confirm that the growth dynamics of the largest crack is radically different in the two limiting regimes of load transfer during the first stages of breaking.Comment: 8 pages, 7 figures, revtex4 styl

    Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought

    Get PDF
    International audienceTo withstand and to recover from severe summer drought is crucial for trees, as dry periods are predicted to occur more frequently over the coming decades.* In order to better understand growth-related tree responses to drought, wood formation, vessel characteristics and stable carbon isotope composition (δ13C) in tree rings of Quercus pubescens saplings imposed to two consecutive summer droughts were compared with regularly watered control trees.* In both years, photosynthetic activity was strongly inhibited during the drought periods of five to seven weeks but quickly restored after re-watering, reinitiating wood formation. Stress caused more than a 20% reduction in ring width, a 0.5‰ increase in latewood δ13C and changes in vessels characteristics in both the current year latewood and the next year earlywood. The latewood displayed up to 90% increased hydraulic conductivity than control trees, likely to compensate for a cavitation-induced reduction of water transport.* The earlywood after the first drought year was characterized by more but smaller vessels suggesting the attempt of restoring conductivity while minimizing the risk of hydraulic failure. However, after the second year, the reduction of hydraulic conductivity and the increased δ13C values indicate a structural adjustment towards a reduced growth induced by exhaustion of carbon reserves
    • …
    corecore