56 research outputs found
Fracture model with variable range of interaction
We introduce a fiber bundle model where the interaction among fibers is
modeled by an adjustable stress-transfer function which can interpolate between
the two limiting cases of load redistribution, the global and the local load
sharing schemes. By varying the range of interaction several features of the
model are numerically studied and a crossover from mean field to short range
behavior is obtained. The properties of the two regimes and the emergence of
the crossover in between are explored by numerically studying the dependence of
the ultimate strength of the material on the system size, the distribution of
avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we
analyze the moments of the cluster size distributions to accurately determine
the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be
published in Phys. Rev.
Time evolution of damage under variable ranges of load transfer
We study the time evolution of damage in a fiber bundle model in which the
range of interaction of fibers varies through an adjustable stress transfer
function recently introduced. We find that the lifetime of the material
exhibits a crossover from mean field to short range behavior as in the static
case. Numerical calculations showed that the value at which the transition
takes place depends on the system's disorder. Finally, we have performed a
microscopic analysis of the failure process. Our results confirm that the
growth dynamics of the largest crack is radically different in the two limiting
regimes of load transfer during the first stages of breaking.Comment: 8 pages, 7 figures, revtex4 styl
Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought
International audienceTo withstand and to recover from severe summer drought is crucial for trees, as dry periods are predicted to occur more frequently over the coming decades.* In order to better understand growth-related tree responses to drought, wood formation, vessel characteristics and stable carbon isotope composition (δ13C) in tree rings of Quercus pubescens saplings imposed to two consecutive summer droughts were compared with regularly watered control trees.* In both years, photosynthetic activity was strongly inhibited during the drought periods of five to seven weeks but quickly restored after re-watering, reinitiating wood formation. Stress caused more than a 20% reduction in ring width, a 0.5‰ increase in latewood δ13C and changes in vessels characteristics in both the current year latewood and the next year earlywood. The latewood displayed up to 90% increased hydraulic conductivity than control trees, likely to compensate for a cavitation-induced reduction of water transport.* The earlywood after the first drought year was characterized by more but smaller vessels suggesting the attempt of restoring conductivity while minimizing the risk of hydraulic failure. However, after the second year, the reduction of hydraulic conductivity and the increased δ13C values indicate a structural adjustment towards a reduced growth induced by exhaustion of carbon reserves
- …