347 research outputs found
Progress on Neutron-Target Multipoles above 1 GeV
We report a new extraction of nucleon resonance couplings using pi-
photoproduction cross sections on the neutron. The world database for the
process gn-->pi-p above 1 GeV has quadrupled with the addition of new
differential cross sections from the CEBAF Large Acceptance Spectrometer (CLAS)
at Jefferson Lab in Hall B. Differential cross sections from CLAS have been
improved with a new final-state interaction determination using a diagrammatic
technique taking into account the SAID phenomenological NN and piN final-state
interaction amplitudes. Resonance couplings have been extracted and compared to
previous determinations. With the addition of these new cross sections,
significant changes are seen in the high-energy behavior of the SAID cross
sections and amplitudes.Comment: 4 pages, 3 figures, 1 table; talk given at 12th International
Workshop on Meson Production, Properties and Interaction (MESON2012), 31 May
- 5 June 2012, Krakow, Poland; will be published online in European Journal
Web of Conference
Neutral Plasma Oscillations at Zero Temperature
We use cold plasma theory to calculate the response of an ultracold neutral
plasma to an applied rf field. The free oscillation of the system has a
continuous spectrum and an associated damped quasimode. We show that this
quasimode dominates the driven response. We use this model to simulate plasma
oscillations in an expanding ultracold neutral plasma, providing insights into
the assumptions used to interpret experimental data [Phys. Rev. Lett. 85, 318
(2000)].Comment: 4.3 pages, including 3 figure
Revisiting the Higgs Mass and Dark Matter in the CMSSM
Taking into account the available accelerator and astrophysical constraints,
the mass of the lightest neutral Higgs boson h in the minimal supersymmetric
extension of the Standard Model with universal soft supersymmetry-breaking
masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data
from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a
possibility. Here we study the consequences for the parameters of the CMSSM and
direct dark matter detection if the Higgs hint is confirmed, focusing on the
strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the
relic density of the lightest neutralino chi falls within the range of the
cosmological cold dark matter density allowed by WMAP and other experiments. We
find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would
the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the
stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured,
together with its extension to a funnel where rapid annihilation via
direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more
options would be open. We give parametrizations of WMAP strips with large tan
beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV,
and present predictions for spin-independent elastic dark matter scattering
along these strips. These are generally low for models compatible with m_h =
125 GeV, whereas the XENON100 experiment already excludes some portions of
strips where m_h is smaller.Comment: 24 pages, 9 figure
A two-component pre-seeded dermal-epidermal scaffold
We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full-thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease-degradable elements and cell-binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-l-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell-type-specific cues to allow for cell proliferation and form a construct that mimics the skin environment.D.S.K. acknowledges funding from the Biotechnology Research Endowment from the Department of Anesthesiology at Boston Children's Hospital. I.P.M. acknowledges the Portuguese Foundation for Science and Technology for the grant BD/39396/2007 and the MIT-Portugal Program. D.G. acknowledges the Swiss National Science Foundation for a post-doctoral fellowship (PBGEP3-129111). B.P.T. acknowledges an NIR Ruth L. Kirschstein National Research Service Award (F32GM096546)
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
- …