2 research outputs found
The importance of OH radical–neutral low temperature tunnelling reactions in interstellar clouds using a new model
Recent laboratory experiments using a pulsed Laval nozzle apparatus have shown that reactions between a neutral molecule and the radical OH can occur efficiently at low temperatures despite activation energy barriers if there is a hydrogen-bonded complex in the entrance channel which allows the system to tunnel efficiently under the barrier. Since OH is a major radical in the interstellar medium, this class of reactions may well be important in the chemistry that occurs in the gas phase of interstellar clouds. Using a new gas-grain chemical network with both gas-phase reactions and reactions on the surfaces of dust particles, we studied the role of OH–neutral reactions in dense interstellar clouds at 10, 50, and 100 K. We determined that at least one of these reactions can be significant, especially at the lowest temperatures studied, where the rate constants are large. It was found in particular that the reaction between CH3OH and OH provides an effective and unambiguous gas-phase route to the production of the gaseous methoxy radical (CH3O), which has been recently detected in cold, dense interstsellar clouds. The role of other reactions in this class is explored
Low temperature kinetics of the CH3OH + OH reaction
The rate constant of the reaction between methanol and the hydroxyl radical has been studied in the temperature range 56-202 K by pulsed laser photolysis-laser induced fluorescence in two separate experiments using either a low temperature flow tube coupled to a time-of-flight mass spectrometer or a pulsed Laval nozzle apparatus. The two independent techniques yield rate constants that are in mutual agreement and consistent with the results reported previously below 82 K [Shannon et al. Nat. Chem. 2013, 5, 745-749] and above 210 K [Dillon et al. Phys. Chem. Chem. Phys. 2005, 7, 349-355], showing a very sharp increase with decreasing temperature with an onset around 180 K. This onset is also signaled by strong chemiluminescence tentatively assigned to formaldehyde, which is consistent with the formation of the methoxy radical at low temperature by quantum tunnelling, and its subsequent reaction with H and OH. Our results add confidence to the previous low temperature rate constant measurements and consolidate the experimental reference data set for further theoretical work required to describe quantitatively the tunnelling mechanism operating in this reaction. An additional measurement of the rate constant at 56 K yielded a value of (4.9 ± 0.8) × 10-11 cm3 molecule-1 s-1 (2σ), showing that the rate constant is increasing less rapidly at temperatures below 70 K. © 2014 American Chemical Society.This study was supported by project number 291332 (CODITA–Cosmic Dust in the Terrestrial Atmosphere) from the European Research Council. R.L.C. wishes to acknowledge the Natural Environment Research Council for funding of a Ph.D. studentship.Peer reviewe