3,063 research outputs found

    Hypoxylon canker of Aspen

    Get PDF

    Spin structure and longitudinal polarization of hyperon in e+e- annihilation at high energies

    Get PDF
    Longitudinal polarizations of different kinds of hyperons produced in e+e- annihilation at LEP I and LEP II energies in different event samples are calculated using two different pictures for the spin structure of hyperon: that drawn from polarized deep inelastic lepton-nucleon scattering data or that using SU(6) symmetric wave functions. The result shows that measurements of such polarizations should provide useful information to the question of which picture is more suitable in describing the spin effects in the fragmentation processes.Comment: 26 pages with 10 figures. Submitted to Phys. Rev.

    Contact symmetry of time-dependent Schr\"odinger equation for a two-particle system: symmetry classification of two-body central potentials

    Full text link
    Symmetry classification of two-body central potentials in a two-particle Schr\"{o}dinger equation in terms of contact transformations of the equation has been investigated. Explicit calculation has shown that they are of the same four different classes as for the point transformations. Thus in this problem contact transformations are not essentially different from point transformations. We have also obtained the detailed algebraic structures of the corresponding Lie algebras and the functional bases of invariants for the transformation groups in all the four classes

    Hyperon polarization in semi-inclusive deeply inelastic lepton-nucleon scattering at high energy

    Get PDF
    We calculate the polarizations for different octet hyperons produced in the current fragmentation regions of the deeply inelastic lepton-nucleon scatterings μNμHX\mu^-N \to \mu^- HX and νμNμHX\nu_{\mu} N \to \mu^- HX at high energy using different models for spin transfer in fragmentation processes. The results show that measurements of those hyperon polarizations should provide useful information to distinguish between different models in particular the SU(6) and the DIS pictures used frequently in the literature. We found, in particular, that measuring the polarization of Σ+\Sigma^+ produced in these processes can give a better test to the validity of the different spin transfer models.Comment: 30 pages, 13 figure

    Three-dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76667/1/AIAA-2005-2175-915.pd

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    An explicit height bound for the classical modular polynomial

    Full text link
    For a prime m, let Phi_m be the classical modular polynomial, and let h(Phi_m) denote its logarithmic height. By specializing a theorem of Cohen, we prove that h(Phi_m) <= 6 m log m + 16 m + 14 sqrt m log m. As a corollary, we find that h(Phi_m) <= 6 m log m + 18 m also holds. A table of h(Phi_m) values is provided for m <= 3607.Comment: Minor correction to the constants in Theorem 1 and Corollary 9. To appear in the Ramanujan Journal. 17 pages

    A Possible Crypto-Superconducting Structure in a Superconducting Ferromagnet

    Full text link
    We have measured the dc and ac electrical and magnetic properties in various magnetic fields of the recently reported superconducting ferromagnet RuSr2GdCu2O8. Our reversible magnetization measurements demonstrate the absence of a bulk Meissner state in the compound below the superconducting transition temperature. Several scenarios that might account for the absence of a bulk Meissner state, including the possible presence of a sponge-like non-uniform superconducting or a crypto-superconducting structure in the chemically uniform Ru-1212, have been proposed and discussed.Comment: 8 pages, 5 PNG figures, submitted to Proceedings of the 9th Japan-US Workshop on High-Tc Superconductors, Yamanashi, Japan, October 13-15, 1999; accepted for publication in Physica C (December 24, 1999

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    Heavy Fermion Stabilization of Solitons in 1+1 Dimensions

    Get PDF
    We find static solitons stabilized by quantum corrections in a (1+1)-dimensional model with a scalar field chirally coupled to fermions. This model does not support classical solitons. We compute the renormalized energy functional including one-loop quantum corrections. We carry out a variational search for a configuration that minimizes the energy functional. We find a nontrivial configuration with fermion number whose energy is lower than the same number of free fermions quantized about the translationally invariant vacuum. In order to compute the quantum corrections for a given background field we use a phase-shift parameterization of the Casimir energy. We identify orders of the Born series for the phase shift with perturbative Feynman diagrams in order to renormalize the Casimir energy using perturbatively determined counterterms. Generalizing dimensional regularization, we demonstrate that this procedure yields a finite and unambiguous energy functional.Comment: 27 papes Latex, equation labels corrected, version to be published in Nucl. Phys.
    corecore