13 research outputs found

    Volatile transport during the crystallization of anatectic melts: Oxygen, boron and hydrogen stable isotope study on the metamorphic complex of Naxos, Greece

    No full text
    Crystallization of anatectic melts in high-temperature metamorphic terrains releases volatile-rich magmas that can be transported into adjacent lithologies. This study addresses the variations in the oxygen, boron and hydrogen isotopic composition of aplite-pegmatite dikes that formed during the crystallization of anatectic melts in regional high-temperature metamorphism on the island of Naxos, Greece, and propagated upward into the overlying sequences of metamorphic schist. The transport distance of these dikes was increased through a significant horizontal component of travel that was imposed by contemporaneous low-angle extensional shearing. Laser fluorination oxygen isotope analyses of quartz, tourmaline, garnet, and biotite mineral separates from the aplite-pegmatite dikes show a progressive rise in delta(18)O values with increasing distance from the core. Oxygen isotope fractionations among quartz, tourmaline, and garnet show temperature variations from > 700degreesC down to similar to400degreesC. This range is considered to reflect isotopic fractionation beginning with crystallization at high temperatures in water-undersaturated conditions and then evolving through lower temperature crystallization and retrograde sub-solidus exchange. Two processes are examined for the cause of the progressive increase in delta(18)O values: (1) heterogeneous delta(18)O sources and (2) fluid-rock exchange between the aplite/pegmatite magmas and their host rock. Although the former process cannot be ruled out, there is as yet no evidence in the exposed sequences on Naxos for the presence of a suitable high delta(18)O magma source. In contrast, a tendency for the delta(18)O of quartz in the aplite/pegmatite dikes to approach that of the quartz in the metamorphic rock suggests that fluid-rock exchange with the host rock may potentially be an important process. Advection of fluid into the magma is examined based on Darcian fluid flow into an initially water-undersaturated buoyantly propagating aplitic dike magma. It is shown that such advective flow could only account for part of the O-18-enrichment, unless it were amplified by repeated injection of magma pulses, fluid recycling, and deformation-assisted post-crystallization exchange. The mechanism is, however, adequate to account for hydrogen isotope equilibration between dike and host rock. In contrast, variations in the delta(11)B values of tourmalines suggest that B-11/B-10 fractionation during crystallization and/or magma degassing was the major control of boron geochemistry rather than fluid-rock interaction and that the boron isotopic system was decoupled from that of oxygen. Copyright (C) 2003 Elsevier Ltd

    Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: A study based on the nanometer-scale chemistry of fluid-silicate interfaces

    No full text
    cited By 103International audienceChemical weathering reactions of rocks at Earth's surface play a major role in the chemical cycle of elements, and represent one of the major abiotic sinks for atmospheric CO 2. Because natural chemical weathering reactions occur at different and more complex chemical conditions than laboratory-based weathering experiments, it has long been thought that the underlying fluid-mineral interaction mechanisms are different. In contrast to most previous studies that have relied on ion, electron, and X-ray beam techniques (characterized by μm to mm lateral spatial resolution) to obtain chemical depth profiles of altered mineral surfaces, we have used high resolution and energy filtered transmission electron microscopy (HRTEM, EFTEM) to study mineral-fluid interfaces using TEM foils cut directly across the reaction boundaries. This allowed measurements to be made directly in cross section at nanometer to sub-nanometer-resolution. Our measurements of the surface chemistry and structure of a large suite of laboratory-altered and field-weathered silicate minerals indicate the general presence of surface layers composed of amorphous, hydrated silica. In each case, the boundary between the parent mineral and the corresponding silica layer is characterized by sharp, nanometer-scale chemical concentration jumps that are spatially coincident with a very sharp crystalline-amorphous interfacial boundary. TEM, atomic force microscopy (AFM), and aqueous chemistry data suggest that the surface layers are permeable to fluids. Taken together, our measurements are not in agreement with currently accepted models for chemical weathering, in particular the leached layer theory. Most importantly, our data provide critical evidence for a single mechanism based on interfacial dissolution-reprecipitation. This concept not only unifies weathering processes for the first time, but we also suggest that nanoscale-surface processes can have a potentially negative impact on CO 2 uptake associated with chemical weathering. The results in this study, when combined with recently published research on fluid-assisted mineral replacement reactions, supports the idea that dissolution-reprecipitation is a universal mechanism controlling fluid-mineral interactions (Putnis and Putnis, 2007). Based on this we propose the existence of a chemical weathering continuum based solely on the interfacial dissolution-reprecipitation mechanism. © 2011 Elsevier B.V
    corecore