29 research outputs found

    Modelling the effects of patch-plug configuration on the impact performance of patch-repaired composite laminates

    Get PDF
    The patch-plug configuration has been widely used to repair composite structures and restore the structural integrity of damaged composites. In the present research, single-sided CFRP patch-repaired panels, with different patch-plug configurations, are prepared. This is where a circular-shaped damaged area has been removed and a CFRP patch has been adhesively-bonded onto the panel. In some cases, a CFRP plug is inserted into the hole, caused by removal of the damaged area, before the patch is applied. Such patch-repaired panels, and the pristine CFRP panel, are subjected to a low-velocity impact at an energy of 7.5 J. These impacted pristine and repaired panels are then examined using ultrasonic C-scan and optical microscopy to inspect the impact-associated permanent indentation, interlaminar and intralaminar damage. A finite element analysis (FEA) model, which significantly extends a previously validated elastic-plastic (E-P) numerical damage model, has been developed to predict the impact behaviour of the pristine CFRP panel and the various designs of patch-repaired CFRP panels. The comparison between the experimental and numerical results for all the studied cases shows the maximum deviations for the loading response and the damage area are 12% and 15%, respectively. The good agreement between the experimentally-measured impact properties and those predicted using the numerical model demonstrates that the model is a useful design tool

    Experimental and numerical investigations on the impact behaviour of pristine and patch-repaired composite laminates

    Get PDF
    The present paper investigates the impact behaviour of both pristine carbon-fibre-reinforced-plastic (CFRP) composite laminates and repaired CFRP laminates. For the patch-repaired CFRP specimen, the pristine CFRP panel specimen has been damaged by cutting out a central disc of the CFRP material and then repaired using an adhesively bonded patch of CFRP to cover the hole. Drop-weight, impact tests are performed on these two types of specimens and a numerical elastic-plastic, three-dimensional damage model is developed and employed to simulate the impact behaviour of both types of specimen. This numerical model is meso-scale in nature and assumes that cracks initiate in the CFRP at a nano-scale, in the matrix around fibres, and trigger sub-micrometre intralaminar matrix cracks during the impact event. These localized regions of intralaminar cracking then lead to interlaminar, i.e. delamination, cracking between the neighbouring plies which possess different fibre orientations. These meso-scale, intralaminar and interlaminar, damage processes are modelled using the numerical finite-element analysis model with each individual ply treated as a continuum. Good agreement is found between the results from the experimental studies and the predictions from the numerical simulations. This article is part of the theme issue 'Nanocracks in nature and industry'

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    BackgroundThe Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.ResultsHere, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory.ConclusionWe conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.</p

    Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria

    Get PDF
    Polymorphism in solids is a common phenomenon in drugs, which can lead to compromised quality due to changes in their physicochemical properties, particularly solubility, and, therefore, reduce bioavailability. Herein, a bibliographic survey was performed based on key issues and studies related to polymorphism in active pharmaceutical ingredient (APIs) present in medications from the Farm&#225;cia Popular Rede Pr&#243;pria. Polymorphism must be controlled to prevent possible ineffective therapy and/or improper dosage. Few mandatory tests for the identification and control of polymorphism in medications are currently available, which can result in serious public health concerns
    corecore