575 research outputs found
Source and Fate of Lipids in Polar Gelatinous Zooplankton
The presence or absence of accumulated lipids in arctic and Antarctic medusae and ctenophores was determined by visual examination of living specimens with a dissecting microscope. Lipid accumulations were obvious because of their high refractive indices. Lipids were seen in many of the 200+ gelatinous zooplankton specimens collected. They always consisted of various-sized droplets and larger masses within the lumen of the gastrovascular system. No true depot lipids or adipose tissue were present. The accumulation of lipids was observed in feeding animals, suggesting that the prey-derived lipids were unmodified. Disappearance of lipids in starved animals suggested that lipids are taken up and assimilated. In medusae, they occurred in the stomach, ring and/or radial canals. In most ctenophores, lipids were found in the meridional canals below the comb rows. However, in one ctenophore species, Mertensia ovum, lipids are stored in special sacs associated with the tentacle bulbs. Lipids were more frequently observed in arctic than in Antarctic gelatinous zooplankton. A review of the literature suggests that in the Antarctic, the average lipid content of gelatinous predators is about 3% DW (range = 0.4-6%), whereas in the Arctic it is nearly three times higher, about 8% DW (range = 1.5-22%). These differences are probably related to the amounts of lipids in their prey. The abundance of lipid-rich Calanus spp. copepods in the Arctic may be responsible for the high levels of lipids in gelatinous predators.Key words: lipids, gelatinous zooplankton, ctenophores, medusae, Arctic, Antarctic, polar, feeding, starvationMots clés: lipides, zooplancton gélatineux, cténaires, méduses, Arctique, Antarctique, polaire, alimentation, état de jeûn
Calculation of magnetic anisotropy energy in SmCo5
SmCo5 is an important hard magnetic material, due to its large magnetic
anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using
density functional theory (DFT) calculations where the Sm f-bands, which are
difficult to include in DFT calculations, have been treated within the LDA+U
formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming
from an interplay between the crystal field and the spin-orbit coupling. We
found that both are of similar strengths, unlike some other Sm compounds,
leading to a partial quenching of the orbital moment (f-states cannot be
described as either pure lattice harmonics or pure complex harmonics), an
optimal situation for enhanced MAE. A smaller portion of the MAE can be
associated with the Co-d band anisotropy, related to the peak in the density of
states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u.,
agrees reasonably with the experimental value of 13-16 meV/f.u., and the
calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees
with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.
Cosmic histories of star formation and reionization: An analysis with a power-law approximation
With a simple power-law approximation of high-redshift () star
formation history, i.e., , we
investigate the reionization of intergalactic medium (IGM) and the consequent
Thomson scattering optical depth for cosmic microwave background (CMB) photons.
A constraint on the evolution index is derived from the CMB optical
depth measured by the {\it Wilkinson Microwave Anisotropy Probe} (WMAP)
experiment, which reads ,
where the free parameter is the number of the escaped
ionizing ultraviolet photons per baryon. Moreover, the redshift for full
reionization, , can also be expressed as a function of as well as
. By further taking into account the implication of the
Gunn-Peterson trough observations to quasars for the full reionization
redshift, i.e., , we obtain
and .
For a typical number of of ionizing photons released per baryon of
normal stars, the fraction of these photons escaping from the stars, , can be constrained to within the range of .Comment: 10 pages, 4 figures, accepted for publication in JCA
Renal pericytes: regulators of medullary blood flow
Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla
Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes
The stability analysis of a generalized Dicke model, in the semi-classical
limit, describing the interaction of a two-species Bose-Einstein condensate
driven by a quantized field in the presence of Kerr and spontaneous parametric
processes is presented. The transitions from Rabi to Josephson dynamics are
identified depending on the relative value of the involved parameters.
Symmetry-breaking dynamics are shown for both types of coherent oscillations
due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in
"Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in
Nonlinear Systems
Epistemic and social scripts in computer-supported collaborative learning
Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. One possibility to improve collaborative learning environments is to conceptualize epistemic scripts, which specify how learners work on a given task, and social scripts, which structure how learners interact with each other. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors ‘epistemic script’ and ‘social script’ have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not to lead to the expected effects
Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys
Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and
Applications" to be published in the series Springer Lecture Notes on Physics,
P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical
work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals
and Applications" to be published in the series Springer Lecture Notes on
Physics, P. H. Dederichs and I. Galanakis (eds
Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys
We study the origin of the gap and the role of chemical composition in the
half-ferromagnetic Heusler alloys using the full-potential screened KKR method.
In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap.
Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are
semiconductors, but when Z_t > 18 antibonding states are also populated, thus
the paramagnetic phase becomes unstable and the half-ferromagnetic one is
stabilized. The minority occupied bands accommodate a total of nine electrons
and the total magnetic moment per unit cell in mu_B is just the difference
between Z_t and . While the substitution of the transition metal
atoms may preserve the half-ferromagnetic character, substituting the atom
results in a practically rigid shift of the bands and the loss of
half-metallicity. Finally we show that expanding or contracting the lattice
parameter by 2% preserves the minority-spin gap.Comment: 11 pages, 7 figures New figures, revised tex
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
- …