560 research outputs found

    Source and Fate of Lipids in Polar Gelatinous Zooplankton

    Get PDF
    The presence or absence of accumulated lipids in arctic and Antarctic medusae and ctenophores was determined by visual examination of living specimens with a dissecting microscope. Lipid accumulations were obvious because of their high refractive indices. Lipids were seen in many of the 200+ gelatinous zooplankton specimens collected. They always consisted of various-sized droplets and larger masses within the lumen of the gastrovascular system. No true depot lipids or adipose tissue were present. The accumulation of lipids was observed in feeding animals, suggesting that the prey-derived lipids were unmodified. Disappearance of lipids in starved animals suggested that lipids are taken up and assimilated. In medusae, they occurred in the stomach, ring and/or radial canals. In most ctenophores, lipids were found in the meridional canals below the comb rows. However, in one ctenophore species, Mertensia ovum, lipids are stored in special sacs associated with the tentacle bulbs. Lipids were more frequently observed in arctic than in Antarctic gelatinous zooplankton. A review of the literature suggests that in the Antarctic, the average lipid content of gelatinous predators is about 3% DW (range = 0.4-6%), whereas in the Arctic it is nearly three times higher, about 8% DW (range = 1.5-22%). These differences are probably related to the amounts of lipids in their prey. The abundance of lipid-rich Calanus spp. copepods in the Arctic may be responsible for the high levels of lipids in gelatinous predators.Key words: lipids, gelatinous zooplankton, ctenophores, medusae, Arctic, Antarctic, polar, feeding, starvationMots clés: lipides, zooplancton gélatineux, cténaires, méduses, Arctique, Antarctique, polaire, alimentation, état de jeûn

    Calculation of magnetic anisotropy energy in SmCo5

    Full text link
    SmCo5 is an important hard magnetic material, due to its large magnetic anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using density functional theory (DFT) calculations where the Sm f-bands, which are difficult to include in DFT calculations, have been treated within the LDA+U formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming from an interplay between the crystal field and the spin-orbit coupling. We found that both are of similar strengths, unlike some other Sm compounds, leading to a partial quenching of the orbital moment (f-states cannot be described as either pure lattice harmonics or pure complex harmonics), an optimal situation for enhanced MAE. A smaller portion of the MAE can be associated with the Co-d band anisotropy, related to the peak in the density of states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u., agrees reasonably with the experimental value of 13-16 meV/f.u., and the calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.

    Cosmic histories of star formation and reionization: An analysis with a power-law approximation

    Full text link
    With a simple power-law approximation of high-redshift (3.5\gtrsim3.5) star formation history, i.e., ρ˙(z)[(1+z)/4.5]α\dot{\rho}_*(z)\propto [(1+z)/4.5]^{-\alpha}, we investigate the reionization of intergalactic medium (IGM) and the consequent Thomson scattering optical depth for cosmic microwave background (CMB) photons. A constraint on the evolution index α\alpha is derived from the CMB optical depth measured by the {\it Wilkinson Microwave Anisotropy Probe} (WMAP) experiment, which reads α2.18lgNγ3.89\alpha\approx2.18\lg{\mathscr{N}_{\gamma}}-3.89, where the free parameter Nγ\mathscr{N}_\gamma is the number of the escaped ionizing ultraviolet photons per baryon. Moreover, the redshift for full reionization, zfz_f, can also be expressed as a function of α\alpha as well as Nγ\mathscr{N}_{\gamma}. By further taking into account the implication of the Gunn-Peterson trough observations to quasars for the full reionization redshift, i.e., 6zf76\lesssim z_f \lesssim7, we obtain 0.3α1.30.3\lesssim\alpha\lesssim1.3 and 80Nγ23080\lesssim\mathscr{N}_{\gamma}\lesssim230. For a typical number of 4000\sim4000 of ionizing photons released per baryon of normal stars, the fraction of these photons escaping from the stars, fescf_{\rm esc}, can be constrained to within the range of (2.05.8)(2.0-5.8)%.Comment: 10 pages, 4 figures, accepted for publication in JCA

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes

    Full text link
    The stability analysis of a generalized Dicke model, in the semi-classical limit, describing the interaction of a two-species Bose-Einstein condensate driven by a quantized field in the presence of Kerr and spontaneous parametric processes is presented. The transitions from Rabi to Josephson dynamics are identified depending on the relative value of the involved parameters. Symmetry-breaking dynamics are shown for both types of coherent oscillations due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in "Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in Nonlinear Systems

    Epistemic and social scripts in computer-supported collaborative learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. One possibility to improve collaborative learning environments is to conceptualize epistemic scripts, which specify how learners work on a given task, and social scripts, which structure how learners interact with each other. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors ‘epistemic script’ and ‘social script’ have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not to lead to the expected effects

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys

    Full text link
    We study the origin of the gap and the role of chemical composition in the half-ferromagnetic Heusler alloys using the full-potential screened KKR method. In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap. Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are semiconductors, but when Z_t > 18 antibonding states are also populated, thus the paramagnetic phase becomes unstable and the half-ferromagnetic one is stabilized. The minority occupied bands accommodate a total of nine electrons and the total magnetic moment per unit cell in mu_B is just the difference between Z_t and 2×92 \times 9. While the substitution of the transition metal atoms may preserve the half-ferromagnetic character, substituting the spsp atom results in a practically rigid shift of the bands and the loss of half-metallicity. Finally we show that expanding or contracting the lattice parameter by 2% preserves the minority-spin gap.Comment: 11 pages, 7 figures New figures, revised tex

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation
    corecore