17 research outputs found

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Autologous cardiomyotissue implantation promotes myocardial regeneration, decreases infarct size, and improves left ventricular function

    No full text
    Background-: Cell therapy for myocardial infarction (MI) may be limited by poor cell survival and lack of transdifferentiation. We report a novel technique of implanting whole autologous myocardial tissue from preserved myocardial regions into infarcted regions. Methods and results-: Fourteen rats were used to optimize cardiomyotissue size with peritoneal wall implantation (300 μm identified as optimal size). Thirty-nine pigs were used to investigate cardiomyotissue implantation in MI induced by left anterior descending balloon occlusion (10 animals died; male-to-female transplantation for tracking with in situ hybridization for Y chromosome, n≤4 [2 donors and 2 MI animals]; acute MI implantation cohort at 1 hour, n≤13; and healed MI implantation at 2 weeks, n≤12). Assessment included echocardiography, magnetic resonance imaging, hemodynamics, triphenyltetrazolium chloride staining, and histological and molecular analyses. Tracking studies demonstrated viable implants with donor cells interspersed in the adjacent myocardium with gap junctions and desmosomes. In the acute MI cohort, treated animals compared with controls had improved perfusion by magnetic resonance imaging (1.2±0.01 versus 0.86±0.05; P<0.01), decreased MI size (magnetic resonance imaging: left ventricle, 2.2±0.5% versus 5.4±1.5%, P≤0.04; triphenyltetrazolium chloride: anterior wall, 10.3±4.6% versus 28.9±5.8%, P<0.03), and improved contractility (dP/dt, 1235±215 versus 817±817; P<0.05). In the healed MI cohort, treated animals had less decline in ejection fraction between 2 and 4 week assessment (-3±4% versus -13±-4%; P<0.05), less decline in ±dP/dt, and smaller MI (triphenyltetrazolium chloride, 21±11% versus 3±8%; P≤0.006) than control animals. Infarcts in the treated animals contained more mdr-1 cells and fewer c-kit cells with a trend for decreased expression of matrix metalloproteinase-2 and increased expression of tissue inhibitor of metalloproteinase-2. Conclusion-: Autologous cardiomyotissue implanted in an MI area remains viable, exhibits electromechanical coupling, decreases infarct size, and improves left ventricular function. Copyright © 2011 American Heart Association
    corecore