479 research outputs found

    How magic is the magic 68Ni nucleus?

    Get PDF
    We calculate the B(E2) strength in 68Ni and other nickel isotopes using several theoretical approaches. We find that in 68Ni the gamma transition to the first 2+ state exhausts only a fraction of the total B(E2) strength, which is mainly collected in excited states around 5 MeV. This effect is sensitive to the energy splitting between the fp shell and the g_{9/2}orbital. We argue that the small experimental B(E2) value is not strong evidence for the double-magic character of 68Ni.Comment: 4 pages, 4 figure

    The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources

    Full text link
    The production and analysis of distributed sources of 24Na and 222Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the 3He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described.Comment: 24 pages, 13 figure

    Quantum Attractor Flows

    Get PDF
    Motivated by the interpretation of the Ooguri-Strominger-Vafa conjecture as a holographic correspondence in the mini-superspace approximation, we study the radial quantization of stationary, spherically symmetric black holes in four dimensions. A key ingredient is the classical equivalence between the radial evolution equation and geodesic motion of a fiducial particle on the moduli space M^*_3 of the three-dimensional theory after reduction along the time direction. In the case of N=2 supergravity, M^*_3 is a para-quaternionic-Kahler manifold; in this case, we show that BPS black holes correspond to a particular class of geodesics which lift holomorphically to the twistor space Z of M^*_3, and identify Z as the BPS phase space. We give a natural quantization of the BPS phase space in terms of the sheaf cohomology of Z, and compute the exact wave function of a BPS black hole with fixed electric and magnetic charges in this framework. We comment on the relation to the topological string amplitude, extensions to N>2 supergravity theories, and applications to automorphic black hole partition functions.Comment: 43 pages, 6 figures; v2: typos and references added; v3: published version, minor change

    Defining multiple joint osteoarthritis, its frequency and impact in a community-based cohort

    Get PDF
    Background/purpose: To update definitions of multiple joint osteoarthritis (MJOA), and to determine the frequency and impact of MJOA in a community-based cohort. Methods: Following PRISMA guidelines and with the help of a professional research librarian, we performed a systematic review in Medline using the terms osteoarthritis, generalized, polyarticular, multiple joint, and multi-joint among others, to obtain articles related to MJOA. A total of 42 articles were included for data extraction based on multiple criteria including the requirement for a clearly stated definition of OA assessed at more than one body site. We assessed frequency of these definitions in the Johnston County OA Project (JoCo OA)cohort as well as outcomes related to general health and physical function. Results: A total of 6 clearly stated definitions for MJOA were identified. These definitions were integrated with a list of 24 definitions from our previous systematic review and distilled down to produce 10 literature-derived, operationalized MJOA definitions. Based on these definitions, high frequencies of radiographic (4–74%)and symptomatic (2–52%)MJOA were found in the JoCo OA. Significant detrimental effects were seen on general health and physical function for most definitions. Conclusions: We constructed a list of 10 summary MJOA definitions based in the literature that are frequent and associated with important clinical outcomes. These definitions capture some of the variability of MJOA phenotypes and provide a starting point for future analyses of both existing and newly initiated studies

    Projection Postulate and Atomic Quantum Zeno Effect

    Get PDF
    The projection postulate has been used to predict a slow-down of the time evolution of the state of a system under rapidly repeated measurements, and ultimately a freezing of the state. To test this so-called quantum Zeno effect an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in which an atomic-level measurement was realized by means of a short laser pulse. The relevance of the results has given rise to controversies in the literature. In particular the projection postulate and its applicability in this experiment have been cast into doubt. In this paper we show analytically that for a wide range of parameters such a short laser pulse acts as an effective level measurement to which the usual projection postulate applies with high accuracy. The corrections to the ideal reductions and their accumulation over n pulses are calculated. Our conclusion is that the projection postulate is an excellent pragmatic tool for a quick and simple understanding of the slow-down of time evolution in experiments of this type. However, corrections have to be included, and an actual freezing does not seem possible because of the finite duration of measurements.Comment: 25 pages, LaTeX, no figures; to appear in Phys. Rev.

    A Field-theoretical Interpretation of the Holographic Renormalization Group

    Get PDF
    A quantum-field theoretical interpretation is given to the holographic RG equation by relating it to a field-theoretical local RG equation which determines how Weyl invariance is broken in a quantized field theory. Using this approach we determine the relation between the holographic C theorem and the C theorem in two-dimensional quantum field theory which relies on the Zamolodchikov metric. Similarly we discuss how in four dimensions the holographic C function is related to a conjectured field-theoretical C function. The scheme dependence of the holographic RG due to the possible presence of finite local counterterms is discussed in detail, as well as its implications for the holographic C function. We also discuss issues special to the situation when mass deformations are present. Furthermore we suggest that the holographic RG equation may also be obtained from a bulk diffeomorphism which reduces to a Weyl transformation on the boundary.Comment: 24 pages, LaTeX, no figures; references added, typos corrected, paragraph added to section

    Small-Scale Vertical Movements of Summer Flounder Relative to Diurnal, Tidal, and Temperature Changes

    Get PDF
    Observation of animal movements on small spatial scales provides a means to understand how large-scale species distributions are established from individual behavioral decisions. Small-scale vertical movements of 14 Summer Flounder Paralichthys dentatus residing in Chesapeake Bay were observed by using depth data collected with archival tags. A generalized linear mixed model was employed to examine the relationship between these vertical movements and environmental covariates such as tidal state, time of day, lunar phase, and temperature. Vertical movements increased with warming water temperatures, and this pattern was most apparent at night and during rising and falling tides. Fish generally exhibited greater vertical movements at night, but the difference between vertical movements in the day and those at night decreased as fish increased in size. Results from this study fill a void in understanding the small-scale movements of Summer Flounder and could be incorporated into individual-based models to investigate how species distributions develop in response to environmental conditions

    Biomarkers and longitudinal changes in lumbar spine degeneration and low back pain: the Johnston County Osteoarthritis Project

    Get PDF
    Objective: To determine if baseline biomarkers are associated with longitudinal changes in the worsening of disc space narrowing (DSN), vertebral osteophytes (OST), and low back pain (LBP). Design: Paired baseline (2003–2004) and follow-up (2006–2010) lumbar spine radiographs from the Johnston County Osteoarthritis Project were graded for severity of DSN and OST. LBP severity was self-reported. Concentrations of analytes (cytokines, proteoglycans, and neuropeptides) were quantified by immunoassay. Pressure-pain threshold (PPT), a marker of sensitivity to pressure pain, was measured with a standard dolorimeter. Binary logistic regression models were used to estimate odd ratios (OR) and 95% confidence intervals (CI) of biomarker levels with DSN, OST, or LBP. Interactions were tested between biomarker levels and the number of affected lumbar spine levels or LBP. Results: We included participants (n = 723) with biospecimens, PPT, and paired lumbar spine radiographic data. Baseline Lumican, a proteoglycan reflective of extracellular matrix changes, was associated with longitudinal changes in DSN worsening (OR = 3.19 [95% CI 1.22, 8.01]). Baseline brain-derived neuropathic factor, a neuropeptide, (OR = 1.80 [95% CI 1.03, 3.16]) was associated with longitudinal changes in OST worsening, which may reflect osteoclast genesis. Baseline hyaluronic acid (OR = 1.31 [95% CI 1.01, 1.71]), indicative of systemic inflammation, and PPT (OR = 1.56 [95% CI 1.02, 2.31]) were associated with longitudinal increases in LBP severity. Conclusion: These findings suggest that baseline biomarkers are associated with longitudinal changes occurring in structures of the lumbar spine (DSN vs OST). Markers of inflammation and perceived pressure pain sensitivity were associated with longitudinal worsening of LBP

    Joint hypermobility is not positively associated with prevalent multiple joint osteoarthritis: A cross-sectional study of older adults

    Get PDF
    Background: This cross-sectional study evaluated associations of joint hypermobility and multiple joint osteoarthritis (MJOA) in a community-based cohort of adults 45+ years of age. Methods: MJOA and joint hypermobility data were from 1677 participants (mean age 69 years, 68% women) who completed research clinic visits during 2003-2010. Prevalent MJOA was defined in four ways. Radiographic OA (rOA) was defined as Kellgren-Lawrence (KL) > 2 at any included study joint; symptomatic OA (sxOA) required both symptoms and rOA in a joint. Joint hypermobility was defined as a Beighton score of > 4. Separate logistic regression models were used to estimate odds ratios (OR) between joint hypermobility and each MJOA definition, adjusting for age, sex, race, body mass index, and baseline visit. Results: In this cohort, 4% had Beighton score > 4 and 63% met any definition of MJOA. Joint hypermobility was associated with significantly lower odds of radiographic and symptomatic MJOA-1 (multiple joint OA-definition 1: involvement of > 1 IP (interphalangeal) nodes and > 2 sites of hip, knee, and spine; 74 and 58% lower, respectively). However, for the other MJOA definitions (i.e., MJOA-2:involvement of > 2 IP joints, > 1 carpometacarpal [CMC] joints, and knee or hip sites; MJOA-3: involvement of > 5 joint sites from among distal interphalangeal, proximal interphalangeal, CMC, hip, knee, or spine sites; and MJOA-4:involvement of > 2 lower body sites (hip, knee, or spine), there were no statistically significant associations. For associations between site-specific hypermobility and any MJOA definition, most adjusted ORs were less than one, but few were statistically significant. Conclusions: Overall, joint hypermobility was not positively associated with any definition of prevalent MJOA in this cohort, and an inverse association existed with one definition of MJOA. Longitudinal studies are needed to determine the contribution of hypermobility to the incidence and progression of MJOA outcomes

    Scaling solution, radion stabilization, and initial condition for brane-world cosmology

    Full text link
    We propose a new, self-consistent and dynamical scenario which gives rise to well-defined initial conditions for five-dimensional brane-world cosmologies with radion stabilization. At high energies, the five-dimensional effective theory is assumed to have a scale invariance so that it admits an expanding scaling solution as a future attractor. The system automatically approaches the scaling solution and, hence, the initial condition for the subsequent low-energy brane cosmology is set by the scaling solution. At low energies, the scale invariance is broken and a radion stabilization mechanism drives the dynamics of the brane-world system. We present an exact, analytic scaling solution for a class of scale-invariant effective theories of five-dimensional brane-world models which includes the five-dimensional reduction of the Horava-Witten theory, and provide convincing evidence that the scaling solution is a future attractor.Comment: 17 pages; version accepted for PRD, references adde
    • …
    corecore