608 research outputs found

    Polarized rho mesons and the asymmetry between Delta d^bar(x) and Delta u^bar(x) in the sea of the nucleon

    Full text link
    We present a calculation of the polarized rho meson cloud in a nucleon using time-ordered perturbation theory in two different variants advocated in the literature. We calculate the induced difference between the distributions Delta d^bar(x) and Delta u^bar(x). We use a recent lattice calculation to motivate an ansatz for the polarized valence quark distribution of the rho meson. Our calculations show that the two theoretical approaches give vastly different results. We conclude that Delta d^bar(x) - Delta u^bar(x) can be of relevant size with important consequences for the combined fits of polarized distribution functions.Comment: 14 pages LaTeX, 8 figures; v3: some minor changes; this preprint supports the version to appear in Phys. Lett. B with an additional appendi

    Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains

    Full text link
    The formation and propagation of singularities for Boltzmann equation in bounded domains has been an important question in numerical studies as well as in theoretical studies. Consider the nonlinear Boltzmann solution near Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We demonstrate that discontinuity is created at the non-convex part of the grazing boundary, then propagates only along the forward characteristics inside the domain before it hits on the boundary again.Comment: 39 pages, 5 Figure

    Novel criticality in a model with absorbing states

    Full text link
    We study a one-dimensional model which undergoes a transition between an active and an absorbing phase. Monte Carlo simulations supported by some additional arguments prompted as to predict the exact location of the critical point and critical exponents in this model. The exponents δ=0.5\delta=0.5 and z=2z=2 follows from random-walk-type arguments. The exponents β=ν\beta = \nu_{\perp} are found to be non-universal and encoded in the singular part of reactivation probability, as recently discussed by H. Hinrichsen (cond-mat/0008179). A related model with quenched randomness is also studied.Comment: 5 pages, 5 figures, generalized version with the continuously changing exponent bet

    Ratios of BB and DD Meson Decay Constants in Relativistic Quark Model

    Full text link
    We calculate the ratios of BB and DD meson decay constants by applying the variational method to the relativistic hamiltonian of the heavy meson. We adopt the Gaussian and hydrogen-type trial wave functions, and use six different potentials of the potential model. We obtain reliable results for the ratios, which are similar for different trial wave functions and different potentials. The obtained ratios show the deviation from the nonrelativistic scaling law, and they are in a pretty good agreement with the results of the Lattice calculations.Comment: 13 pages, 1 Postscript figur

    Charmed Exotics in Heavy Ion Collisions

    Get PDF
    Based on the color-spin interaction in diquarks, we argue that charmed multiquark hadrons are likely to exist. Because of the appreciable number of charm quarks produced in central nucleus-nucleus collisions at ultrarelativistic energies, production of charmed multiquark hadrons is expected to be enhanced in these collisions. Using both the quark coalescence model and the statistical hadronization model, we estimate the yield of charmed tetraquark meson TccT_{cc} and pentaquark baryon Θcs\Theta_{cs} in heavy ion collisions at RHIC and LHC. We further discuss the decay modes of these charmed exotic hadrons in order to facilitate their detections in experiments

    Initial-State Interactions in the Unpolarized Drell-Yan Process

    Get PDF
    We show that initial-state interactions contribute to the cos2ϕ\cos 2 \phi distribution in unpolarized Drell-Yan lepton pair production ppp p and ppˉ+X p \bar p \to \ell^+ \ell^- X, without suppression. The asymmetry is expressed as a product of chiral-odd distributions h1(x1,p2)×hˉ1(x2,k2)h_1^\perp(x_1,\bm{p}_\perp^2)\times \bar h_1^\perp(x_2,\bm{k}_\perp^2) , where the quark-transversity function h1(x,p2)h_1^\perp(x,\bm{p}_\perp^2) is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an {\it unpolarized} proton. We compute this (naive) TT-odd and chiral-odd distribution function and the resulting cos2ϕ\cos 2 \phi asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function h1(x,p2)h_1^\perp(x,\bm{p}_\perp^2) equals the TT-odd (chiral-even) Sivers effect function f1T(x,p2)f^\perp_{1T}(x,\bm{p}_\perp^2). This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos2ϕ\cos 2 \phi asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.Comment: 22 pages, 6 figure

    Minority carrier lifetime in silicon photovoltaics : the effect of oxygen precipitation

    Get PDF
    Single-crystal Czochralski silicon used for photovoltaics is typically supersaturated with interstitial oxygen at temperatures just below the melting point. Oxide precipitates therefore can form during ingot cooling and cell processing, and nucleation sites are typically vacancy-rich regions. Oxygen precipitation gives rise to recombination centres, which can reduce cell efficiencies by as much as 4% (absolute). We have studied the recombination behaviour in p-type and n-type monocrystalline silicon with a range of doping levels intentionally processed to contain oxide precipitates with a range of densities, sizes and morphologies. We analyse injection-dependent minority carrier lifetime measurements to give a full parameterisation of the recombination activity in terms of Shockley–Read–Hall statistics. We intentionally contaminate specimens with iron, and show recombination activity arises from iron segregated to oxide precipitates and surrounding defects. We find that phosphorus diffusion gettering reduces the recombination activity of the precipitates to some extent. We also find that bulk iron is preferentially gettered to the phosphorus diffused layer rather than to oxide precipitates

    Projecting the Bethe-Salpeter Equation onto the Light-Front and back: A Short Review

    Full text link
    The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both i) the Light-Front effective interaction and ii) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined.Comment: 16 pages, macros included. Mini-review to be printed in a regular issue of Few-Body Systems devoted to the Workshop on "Relativistic Description of Two- and Three-body Systems in Nuclear Physics" ECT* Trento, 19 - 23 October 200

    Chiral Baryon Fields in the QCD Sum Rule

    Full text link
    We study the structure of local baryon fields using the method of QCD sum rule. We only consider the single baryon fields and calculate their operator product expansions. We find that the octet baryon fields belonging to the chiral representations [(3,3*)+(3*,3)] and [(8,1)+(1,8)] and the decuplet baryon fields belonging to the chiral representations [(3,6)+(6,3)] lead to the baryon masses which are consistent with the experimental data of ground baryon masses. We also calculate their decay constants, check our normalizations for baryon fields in PRD81:054002(2010) and find that they are well-defined.Comment: 12 pages, 6 figure, 1 table, accepted by EPJ

    Hsp70 in mitochondrial biogenesis

    Get PDF
    The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix
    corecore