323 research outputs found

    Freezing in random graph ferromagnets

    Full text link
    Using T=0 Monte Carlo and simulated annealing simulation, we study the energy relaxation of ferromagnetic Ising and Potts models on random graphs. In addition to the expected exponential decay to a zero energy ground state, a range of connectivities for which there is power law relaxation and freezing to a metastable state is found. For some connectivities this freezing persists even using simulated annealing to find the ground state. The freezing is caused by dynamic frustration in the graphs, and is a feature of the local search-nature of the Monte Carlo dynamics used. The implications of the freezing on agent-based complex systems models are briefly considered.Comment: Published version: 1 reference deleted, 1 word added. 4 pages, 5 figure

    From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    Get PDF
    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: (i) through single point inversions (which encompasses also the analysis of MHD wave modes), (ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and (iii) using tomographic techniques.Comment: Accepted by Solar Physics, April 201

    Slow Relaxation in a Constrained Ising Spin Chain: a Toy Model for Granular Compaction

    Full text link
    We present detailed analytical studies on the zero temperature coarsening dynamics in an Ising spin chain in presence of a dynamically induced field that favors locally the `-' phase compared to the `+' phase. We show that the presence of such a local kinetic bias drives the system into a late time state with average magnetization m=-1. However the magnetization relaxes into this final value extremely slowly in an inverse logarithmic fashion. We further map this spin model exactly onto a simple lattice model of granular compaction that includes the minimal microscopic moves needed for compaction. This toy model then predicts analytically an inverse logarithmic law for the growth of density of granular particles, as seen in recent experiments and thereby provides a new mechanism for the inverse logarithmic relaxation. Our analysis utilizes an independent interval approximation for the particle and the hole clusters and is argued to be exact at late times (supported also by numerical simulations).Comment: 9 pages RevTeX, 1 figures (.eps

    Dynamics of an Unbounded Interface Between Ordered Phases

    Full text link
    We investigate the evolution of a single unbounded interface between ordered phases in two-dimensional Ising ferromagnets that are endowed with single-spin-flip zero-temperature Glauber dynamics. We examine specifically the cases where the interface initially has either one or two corners. In both examples, the interface evolves to a limiting self-similar form. We apply the continuum time-dependent Ginzburg-Landau equation and a microscopic approach to calculate the interface shape. For the single corner system, we also discuss a correspondence between the interface and the Young tableau that represents the partition of the integers.Comment: 9 pages, 11 figures, 2-column revtex4 format. V2: references added and discussion section expanded slightly. Final version for PRE. V3: A few small additional editorial change

    Fraction of uninfected walkers in the one-dimensional Potts model

    Full text link
    The dynamics of the one-dimensional q-state Potts model, in the zero temperature limit, can be formulated through the motion of random walkers which either annihilate (A + A -> 0) or coalesce (A + A -> A) with a q-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random walker up to time t remain uninfected. The fraction of uninfected walkers is investigated numerically and found to decay algebraically, U(t) \sim t^{-\phi(q)}, with a nontrivial exponent \phi(q). Our study is extended to include the coupled diffusion-limited reaction A+A -> B, B+B -> A in one dimension with equal initial densities of A and B particles. We find that the density of walkers decays in this model as \rho(t) \sim t^{-1/2}. The fraction of sites unvisited by either an A or a B particle is found to obey a power law, P(t) \sim t^{-\theta} with \theta \simeq 1.33. We discuss these exponents within the context of the q-state Potts model and present numerical evidence that the fraction of walkers which remain uninfected decays as U(t) \sim t^{-\phi}, where \phi \simeq 1.13 when infection occurs between like particles only, and \phi \simeq 1.93 when we also include cross-species contamination.Comment: Expanded introduction with more discussion of related wor

    Magneto-Acoustic Wave Oscillations in Solar Spicules

    Full text link
    Some observations suggest that solar spicules show small amplitude and high frequency oscillations of magneto-acoustic waves, which arise from photospheric granular forcing. We apply the method of MHD seismology to determine the period of kink waves. For this purposes, the oscillations of a magnetic cylinder embedded in a field-free environment is investigated. Finally, diagnostic diagrams displaying the oscillatory period in terms of some equilibrium parameters are provided to allow a comparison between theoretical results and those coming from observations.Comment: 10 pages, 4 fig

    Exponents appearing in heterogeneous reaction-diffusion models in one dimension

    Full text link
    We study the following 1D two-species reaction diffusion model : there is a small concentration of B-particles with diffusion constant DBD_B in an homogenous background of W-particles with diffusion constant DWD_W; two W-particles of the majority species either coagulate (W+WWW+W \longrightarrow W) or annihilate (W+WW+W \longrightarrow \emptyset) with the respective probabilities pc=(q2)/(q1) p_c=(q-2)/(q-1) and pa=1/(q1)p_a=1/(q-1); a B-particle and a W-particle annihilate (W+BW+B \longrightarrow \emptyset) with probability 1. The exponent θ(q,λ=DB/DW)\theta(q,\lambda=D_B/D_W) describing the asymptotic time decay of the minority B-species concentration can be viewed as a generalization of the exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D qq-state Potts model starting from a random initial condition : the W-particles represent domain walls, and the exponent θ(q,λ)\theta(q,\lambda) characterizes the time decay of the probability that a diffusive "spectator" does not meet a domain wall up to time tt. We extend the methods introduced by Derrida, Hakim and Pasquier ({\em Phys. Rev. Lett.} {\bf 75} 751 (1995); Saclay preprint T96/013, to appear in {\em J. Stat. Phys.} (1996)) for the problem of persistent spins, to compute the exponent θ(q,λ)\theta(q,\lambda) in perturbation at first order in (q1)(q-1) for arbitrary λ\lambda and at first order in λ\lambda for arbitrary qq.Comment: 29 pages. The three figures are not included, but are available upon reques

    Fate of Zero-Temperature Ising Ferromagnets

    Full text link
    We investigate the relaxation of homogeneous Ising ferromagnets on finite lattices with zero-temperature spin-flip dynamics. On the square lattice, a frozen two-stripe state is apparently reached approximately 1/4 of the time, while the ground state is reached otherwise. The asymptotic relaxation is characterized by two distinct time scales, with the longer stemming from the influence of a long-lived diagonal stripe ``defect''. In greater than two dimensions, the probability to reach the ground state rapidly vanishes as the size increases and the system typically ends up wandering forever within an iso-energy set of stochastically ``blinking'' metastable states.Comment: 4 pages in column format, 6 figure

    Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states

    Full text link
    When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it has the same symmetries as an ensemble of random matrices known as class D. A nonlinear sigma model analysis of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or spin-polarized p-wave superconductors and paired fractional quantum Hall states allow a mapping onto an Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered or weak-pairing phase, in which nonabelian statistics is obtained in the pure case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale
    corecore