134 research outputs found

    The prevalence and physical properties of extremely low-luminosity galaxies in the early universe

    Get PDF
    Large scale structure and cosmolog

    Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation

    Full text link
    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z~6-10 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF)--which also declines sharply over this redshift range--and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z~6-10 in this context and determine whether it can be explained solely by the behavior of the HMF. From z~6-8, we find a residual change in the physics of galaxy formation corresponding to a ~0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z~10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z~8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA

    Dust mass and dust production efficiencies on the redshift frontier

    Get PDF
    Interstellar matter and star formatio

    Demonstrating the Feasibility of Line Intensity Mapping Using Mock Data of Galaxy Clustering from Simulations

    Full text link
    Visbal & Loeb (2010) have shown that it is possible to measure the clustering of galaxies by cross correlating the cumulative emission from two different spectral lines which originate at the same redshift. Through this cross correlation, one can study galaxies which are too faint to be individually resolved. This technique, known as intensity mapping, is a promising probe of the global properties of high redshift galaxies. Here, we test the feasibility of such measurements with synthetic data generated from cosmological dark matter simulations. We use a simple prescription for associating galaxies with dark matter halos and create a realization of emitted radiation as a function of angular position and wavelength over a patch of the sky. This is then used to create synthetic data for two different hypothetical instruments, one aboard the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and another consisting of a pair of ground based radio telescopes designed to measure the CO(1-0) and CO(2-1) emission lines. We find that the line cross power spectrum can be measured accurately from the synthetic data with errors consistent with the analytical prediction of Visbal & Loeb (2010). Removal of astronomical backgrounds and masking bright line emission from foreground contaminating galaxies do not prevent accurate cross power spectrum measurements.Comment: 12 pages, 6 figures, Submitted to JCA

    The clustering and halo occupation distribution of Lyman-break galaxies at z ˜ 4

    Get PDF
    We investigate the clustering of Lyman-break galaxies (LBGs) at z ∼ 4. Using the hierarchical galaxy formation model GALFORM, we predict, for the first time using a semi-analytical model with feedback from active galactic nuclei (AGN), the angular correlation function (ACF) of LBGs and find agreement within 3σ with new measurements of the ACF from surveys including the Hubble eXtreme Deep Field (XDF) and Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field. Our simulations confirm the conclusion reached using independent models that although the predicted ACFs reproduce the trend of increased clustering with luminosity, the dependence is less strong than observed. We find that for the detection limits of the XDF field, central LBGs at z ∼ 4 predominantly reside in haloes of mass ∼1011–1012 h−1 M⊙ and that satellites reside in larger haloes of mass ∼1012–1013 h−1 M⊙. The model predicts fewer bright satellite LBGs at z ∼ 4 than is inferred from measurements of the ACF at small scales. By analysing the halo occupation distribution (HOD) predicted by the model, we find evidence that AGN feedback affects the HOD of central LBGs in massive haloes. This is a new high-redshift test of this important feedback mechanism. We investigate the effect of photometric errors in the observations on the ACF predictions. We find that the observational uncertainty in the galaxy luminosity reduces the clustering amplitude and that this effect increases towards faint galaxies, particularly on small scales. To compare properties of model with observed LBGs, this uncertainty must be considered

    Cosmic histories of star formation and reionization: An analysis with a power-law approximation

    Full text link
    With a simple power-law approximation of high-redshift (3.5\gtrsim3.5) star formation history, i.e., ρ˙(z)[(1+z)/4.5]α\dot{\rho}_*(z)\propto [(1+z)/4.5]^{-\alpha}, we investigate the reionization of intergalactic medium (IGM) and the consequent Thomson scattering optical depth for cosmic microwave background (CMB) photons. A constraint on the evolution index α\alpha is derived from the CMB optical depth measured by the {\it Wilkinson Microwave Anisotropy Probe} (WMAP) experiment, which reads α2.18lgNγ3.89\alpha\approx2.18\lg{\mathscr{N}_{\gamma}}-3.89, where the free parameter Nγ\mathscr{N}_\gamma is the number of the escaped ionizing ultraviolet photons per baryon. Moreover, the redshift for full reionization, zfz_f, can also be expressed as a function of α\alpha as well as Nγ\mathscr{N}_{\gamma}. By further taking into account the implication of the Gunn-Peterson trough observations to quasars for the full reionization redshift, i.e., 6zf76\lesssim z_f \lesssim7, we obtain 0.3α1.30.3\lesssim\alpha\lesssim1.3 and 80Nγ23080\lesssim\mathscr{N}_{\gamma}\lesssim230. For a typical number of 4000\sim4000 of ionizing photons released per baryon of normal stars, the fraction of these photons escaping from the stars, fescf_{\rm esc}, can be constrained to within the range of (2.05.8)(2.0-5.8)%.Comment: 10 pages, 4 figures, accepted for publication in JCA
    corecore