11 research outputs found

    Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study

    Get PDF
    Introduction Current emergency care systems are not optimized to respond to multiple and complex problems associated with frailty. Services may require reconfiguration to effectively deliver comprehensive frailty care, yet its prevalence and variation are poorly understood. This study primarily determined the prevalence of frailty among older people attending emergency care. Methods This cross-sectional study used a flash mob approach to collect observational European emergency care data over a 24-h period (04 July 2023). Sites were identified through the European Task Force for Geriatric Emergency Medicine collaboration and social media. Data were collected for all individuals aged 65 + who attended emergency care, and for all adults aged 18 + at a subset of sites. Variables included demographics, Clinical Frailty Scale (CFS), vital signs, and disposition. European and national frailty prevalence was determined with proportions with each CFS level and with dichotomized CFS 5 + (mild or more severe frailty). Results Sixty-two sites in fourteen European countries recruited five thousand seven hundred eighty-five individuals. 40% of 3479 older people had at least mild frailty, with countries ranging from 26 to 51%. They had median age 77 (IQR, 13) years and 53% were female. Across 22 sites observing all adult attenders, older people living with frailty comprised 14%. Conclusion 40% of older people using European emergency care had CFS 5 + . Frailty prevalence varied widely among European care systems. These differences likely reflected entrance selection and provide windows of opportunity for system configuration and workforce planning

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Multimodal characterization of the visual network in Huntington's disease gene carriers

    Get PDF
    Objective: A sensorimotor network structural phenotype predicted motor task performance in a previous study in Huntington's disease (HD) gene carriers. We investigated in the visual network whether structure - function - behaviour relationship patterns, and the effects of the HD mutation, extended beyond the sensorimotor network.Methods: We used multimodal visual network MRI structural measures (cortical thickness and white matter connectivity), plus visual evoked potentials and task performance (Map Search; Symbol Digit Modalities Test) in healthy controls and HD gene carriers.Results: Using principal component (PC) analysis, we identified a structure - function relationship common to both groups. PC scores differed between groups indicating white matter disorganization (higher RD, lower FA) and slower, and more disperse, VEP signal transmission (higher VEP P100 latency and lower VEP P100 amplitude) in HD than controls while task performance was similar.Conclusions: HD may be associated with reduced white matter organization and efficient visual network function but normal task performance.Significance: These findings indicate that structure - function relationships in the visual network, and the effects of the HD mutation, share some commonalities with those in the sensorimotor network. However, implications for task performance differ between the two networks suggesting the influence of network specific factors. (C) 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.Neurological Motor Disorder

    Multi-view Object Categorization and Pose Estimation

    No full text
    Object and scene categorization has been a central topic of computer vision research in recent years. The problem is a highly challenging one. A single object may show tremendous variability in appearance and structure under various photometric and geometric conditions. In addition, members of the same class may differ from each other due to various degrees of intra-class variability. Recently, researchers have proposed new models towards the goal of: i) finding a suitable representation that can efficiently capture the intrinsic three-dimensional and multi-view nature of object categories; ii) taking advantage of this representation to help the recognition and categorization task. In this Chapter we will review recent approaches aimed at tackling this challenging problem and focus on the work by Savarese & Fei-Fei [54, 55]. In [54, 55] multi-view object models are obtained by linking together diagnostic parts of the objects from different viewing point. Instead of recovering a full 3D geometry, parts are connected through their mutual homographic transformation. The resulting model is a compact summarization of both the appearance and geometry information of the object class. We show that such

    Object recognition in the geometric era: A retrospective

    Get PDF
    Abstract. Recent advances in object recognition have emphasized the integration of intensity-derived features such as affine patches with associated geometric constraints leading to impressive performance in complex scenes. Over the four previous decades, the central paradigm of recognition was based on formal geometric object descriptions with a focus on the properties of such descriptions under perspective image formation. This paper will review the key advances of the geometric era and investigate the underlying causes of the movement away from formal geometry and prior models towards the use of statistical learning methods based on appearance features.
    corecore