320 research outputs found

    Microphysics of SO(10) Cosmic Strings

    Full text link
    We uncover a rich microphysical structure for SO(10) cosmic strings. For the abelian string the electroweak symmetry is restored around it in a region depending on the electroweak scale. A rich structure of nonabelian strings is found. Some of these also restore the electroweak symmetry. We investigate the zero mode structure of our strings. Whilst there are right handed neutrino zero modes for the abelian string, they do not survive the electroweak phase transition. In general the nonabelian strings do not have fermion zero modes. We consider the generalisation of our results to other theories and consider cosmological consequences of them.Comment: 34 pages, LATEX. Replaced version is restructured, and has small correction to fermion zero mode analysis. To be published in Physical Review

    Quantum-Hall Quantum-Bits

    Get PDF
    Bilayer quantum Hall systems can form collective states in which electrons exhibit spontaneous interlayer phase coherence. We discuss the possibility of using bilayer quantum dot many-electron states with this property to create two-level systems that have potential advantages as quantum bits.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. B (Rapid Communications

    Quasars and their host galaxies

    Full text link
    This review attempts to describe developments in the fields of quasar and quasar host galaxies in the past five. In this time period, the Sloan and 2dF quasar surveys have added several tens of thousands of quasars, with Sloan quasars being found to z>6. Obscured, or partially obscured quasars have begun to be found in significant numbers. Black hole mass estimates for quasars, and our confidence in them, have improved significantly, allowing a start on relating quasar properties such as radio jet power to fundamental parameters of the quasar such as black hole mass and accretion rate. Quasar host galaxy studies have allowed us to find and characterize the host galaxies of quasars to z>2. Despite these developments, many questions remain unresolved, in particular the origin of the close relationship between black hole mass and galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update

    Nucleation of a sodium droplet on C60

    Full text link
    We investigate theoretically the progressive coating of C60 by several sodium atoms. Density functional calculations using a nonlocal functional are performed for NaC60 and Na2C60 in various configurations. These data are used to construct an empirical atomistic model in order to treat larger sizes in a statistical and dynamical context. Fluctuating charges are incorporated to account for charge transfer between sodium and carbon atoms. By performing systematic global optimization in the size range 1<=n<=30, we find that Na_nC60 is homogeneously coated at small sizes, and that a growing droplet is formed above n=>8. The separate effects of single ionization and thermalization are also considered, as well as the changes due to a strong external electric field. The present results are discussed in the light of various experimental data.Comment: 17 pages, 10 figure

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    JWST lensed quasar dark matter survey – I. Description and first results

    Full text link
    peer reviewedThe flux ratios of gravitationally lensed quasars provide a powerful probe of the nature of dark matter. Importantly, these ratios are sensitive to small-scale structure, irrespective of the presence of baryons. This sensitivity may allow us to study the halo mass function even below the scales where galaxies form observable stars. For accurate measurements, it is essential that the quasar’s light is emitted from a physical region of the quasar with an angular scale of milliarcseconds or larger; this minimizes microlensing effects by stars within the deflector. The warm dust region of quasars fits this criterion, as it has parsec-size physical scales and dominates the spectral energy distribution of quasars at wavelengths greater than 10 μm. The JWST Mid-Infrared Instrument is adept at detecting redshifted light in this wavelength range, offering both the spatial resolution and sensitivity required for accurate gravitational lensing flux ratio measurements. Here, we introduce our survey designed to measure the warm dust flux ratios of 31 lensed quasars. We discuss the flux-ratio measurement technique and present results for the first target, DES J0405-3308. We find that we can measure the quasar warm dust flux ratios with 3 per cent precision. Our simulations suggest that this precision makes it feasible to detect the presence of 107 M dark matter haloes at cosmological distances. Such haloes are expected to be completely dark in cold dark matter models

    Limits on νμ(νˉμ)ντ(νˉτ)\nu_\mu(\bar{\nu}_\mu)\to\nu_\tau(\bar{\nu}_\tau) and νμ(νˉμ)νe(νˉe)\nu_\mu(\bar{\nu}_\mu)\to\nu_e(\bar{\nu}_e) Oscillations from a Precision Measurement of Neutrino-Nucleon Neutral Current Interactions

    Full text link
    We present limits on νμ(νˉμ)ντ(νˉτ)\nu_\mu(\bar{\nu}_\mu)\to\nu_\tau(\bar{\nu}_\tau) and νμ(νˉμ)νe(νˉe)\nu_\mu(\bar{\nu}_\mu)\to\nu_e(\bar{\nu}_e) oscillations based on a study of inclusive νN\nu N interactions performed using the CCFR massive coarse grained detector in the FNAL Tevatron Quadrupole Triplet neutrino beam. The sensitivity to oscillations is from the difference in the longitudinal energy deposition pattern of νμN\nu_\mu N versus ντN\nu_\tau N or νeN\nu_e N charged current interactions. The νμ\nu_\mu energies ranged from 30 to 500 GeV with a mean of 140 GeV. The minimum and maximum νμ\nu_\mu flight lengths are 0.9 km and 1.4 km respectively. For νμντ\nu_\mu\to\nu_\tau oscillations, the lowest 90% confidence upper limit in sin22α\sin^22\alpha of 2.7×1032.7\times 10^{-3} is obtained at Δm250\Delta m^2\sim50~eV2^2. This result is the most stringent limit to date for 25<Δm2<9025<\Delta m^2<90 eV2^2. For νμνe\nu_\mu\to\nu_e oscillations, the lowest 90% confidence upper limit in sin22α\sin^22\alpha of 1.9×1031.9\times 10^{-3} is obtained at Δm2350\Delta m^2\sim350~eV2^2. This result is the most stringent limit to date for 250<Δm2<450250<\Delta m^2<450 eV2^2, and also excludes at 90% confidence much of the high Δm2\Delta m^2 region favored by the recent LSND observation.Comment: Revised version contains limit on νμνe\nu_\mu\to\nu_e oscillations as well as limit on νμντ\nu_\mu\to\nu_\tau oscillations found in original. 15 pages, ReVTeX, 3 figures in uuencoded file, submitted to PR

    The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs

    Get PDF
    Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore