874 research outputs found

    The effects of moderate and severe salinity on composition and physiology in the biomass crop miscanthus × giganteus

    Get PDF
    Saline land represents a growing resource that could be utilised for growing biomass crops, such as Miscanthus × giganteus (Greef et Deu.), for eliminating competition with staple food crops. However, the response mechanisms to different salinity regimes, in relation to the impact on quality of the harvested biomass and the combustion properties are largely unknown. Herein, the focus was on the salt-induced compositional changes of ion flux and compartmentalization in the rhizome, stems, and leaves in relation to their impact on salinity tolerance and the combustion quality through investigating the photophysiological, morphophysiological, and biochemical responses of M. × giganteus to moderate and a severe salinity. Severe salinity induced an immediate and sustained adverse response with a reduction in biomass yield, photoinhibition, and metabolic limitations in photosynthesis. Moderate salinity resulted in a slower cumulative response with low biomass losses. Biomass composition, variations in ion compartmentalisation and induction of proline were dependent on the severity and duration of salinity. Ash behaviour indices, including the base percentage and base-to-acid ratio, indicated lower corrosion potential and lower risk of slagging under salinity. Understanding the impact of salinity on the potential for growth on saline land may identify new targets for breeding salinity-tolerant bioenergy crops

    Business rule extraction using decision tree machine learning techniques:A case study into smart returnable transport items

    Get PDF
    Decision support systems are becoming increasingly sophisticated (e.g., being machine learning-based), attempting to automate decisions as much as possible. However, it remains challenging to extract meaningful value from large quantities of data while also maintaining transparency in seeking justification for the choices made. Instead of creating methods for increasing the interpretability of black box models, one way forward is to design models that are inherently interpretable in the first place. Rule-based methods can automate decisions with great transparency and accuracy, helping to ensure compliance with regulations and adherence to organizational guidelines. In this paper, we propose an approach that uses a decision tree machine learning classification technique for extracting business rules from IoT-generated data to predict the asset status of Smart Returnable Transport Items (SRTIs). We report on an industrial case study that uses two years of historical data, obtained from an SRTI provider in the Netherlands, to predict the status of smart pallets. We compare the performance with the results obtained by using a support-vector machine (SVM) technique. Our experiments show that our solution is both accurate and flexible in terms of business rule elicitation. The obtained decision trees are human-interpretable, can easily be combined with other decision-making techniques, and provide a prediction accuracy marginally higher than an SVM technique

    Making video communication mobile by using a small humanoid social assistive robot

    Get PDF
    There is a high need among older persons to maintain their social contacts and to stay involved in social life. In this area of social communication ICT and assistive technology can bring a significant support provided that the actual needs and preferences of the user groups are actually met. The paper describes an innovative solution consisting of a mobile video communication facility using a LED projector which is integrated in a social assistive robot system developed in the framework of the KSERA project

    Making video communication mobile by using a small humanoid social assistive robot

    Get PDF
    There is a high need among older persons to maintain their social contacts and to stay involved in social life. In this area of social communication ICT and assistive technology can bring a significant support provided that the actual needs and preferences of the user groups are actually met. The paper describes an innovative solution consisting of a mobile video communication facility using a LED projector which is integrated in a social assistive robot system developed in the framework of the KSERA project

    The Middle Way: East Asian masters students’ perceptions of critical argumentation in U.K. universities.

    Get PDF
    The paper explores the learning experiences of East Asian masters students in dealing with Western academic norms of critical thinking in classroom debate and assignment writing. The research takes a cultural approach, and employs grounded theory and case study methodology, the aims being for students to explain their perceptions of their personal learning journeys. The data suggest that the majority of students interviewed rejected full academic acculturation into Western norms of argumentation. They instead opted for a ‘Middle Way’ that synergizes the traditional cultural academic values held by many East Asian students with those elements of Western academic norms that are perceived to be aligned with these. This is a relatively new area of research which represents a challenge for British lecturers and students

    Cosmogenic nuclides indicate that boulder fields are dynamic, ancient, multigenerational features

    Get PDF
    Boulder fields are found throughout the world; yet, the history of these features, as well as the processes that form them, remain poorly understood. In high and mid-latitudes, boulder fields are thought to form and be active during glacial periods; however, few quantitative data support this assertion. Here, we use in situ cosmogenic 10Be and 26Al to quantify the near-surface history of 52 samples in and around the largest boulder field in North America, Hickory Run, in central Pennsylvania, USA. Boulder surface 10Be concentrations (n = 43) increase downslope, indicate minimum near-surface histories of 70-600 k.y., and are not correlated with lithology or boulder size. Measurements of samples from the top and bottom of one boulder and three underlying clasts as well as 26Al/10Be ratios (n = 25) suggest that at least some boulders have complex exposure histories caused by flipping and/or cover by other rocks, soil, or ice. Cosmogenic nuclide data demonstrate that Hickory Run, and likely other boulder fields, are dynamic features that persist through multiple glacial-interglacial cycles because of boulder resistance to weathering and erosion. Long and complex boulder histories suggest that climatic interpretations based on the presence of these rocky landforms are likely over simplifications

    The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism

    Get PDF
    The response of the structure of the M-type barium hexaferrite (BaFe12O19) to mechanical action through high-energy milling and its impact on the magnetic behaviour of the ferrite are investigated. Due to the ability of the Fe-57 Mossbauer spectroscopic technique to probe the environment of the Fe nuclei, a valuable insight on a local atomic scale into the mechanically induced changes in the hexagonal structure of the material is obtained. It is revealed that the milling of BaFe12O19 results in the deformation of its constituent polyhedra (FeO6 octahedra, FeO4 tetrahedra and FeO5 triangular bi-pyramids) as well as in the mechanically triggered transition of the Fe3+ cations from the regular 12k octahedral sites into the interstitial positions provided by the magnetoplumbite structure. The response of the hexaferrite to the mechanical treatment is found to be accompanied by the formation of a non-uniform nanostructure consisting of an ordered crystallite surrounded/separated by a structurally disordered surface shell/interface region. The distorted polyhedra and the non-equilibrium cation distribution are found to be confined to the amorphous near-surface layers of the ferrite nanoparticles with the thickness extending up to about 2 nm. The information on the mechanically induced short-range structural disorder in BaFe12O19 is complemented by an investigation of its magnetic behaviour on a macroscopic scale. It is demonstrated that the milled ferrite nanoparticles exhibit a pure superparamagnetism at room temperature. As a consequence of the far-from-equilibrium structural disorder in the surface shell of the nanoparticles, the mechanically treated BaFe12O19 exhibits a reduced magnetization and an enhanced coercivity.DFG/SPP/1415APVV/0528-11VEGA/2/0097/1
    • …
    corecore