59 research outputs found

    Coherent vs incoherent interlayer transport in layered metals

    Get PDF
    The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For κ\kappa-(BEDT-TTF)2_2I3_3 we find a well-resolved peak in the angle-dependent magnetoresistance at Θ=90\Theta = 90^\circ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for β\beta''-(BEDT-TTF)2_2SF5_5CH2_2CF2_2SO3_3. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres

    Capture of Solar and Higher-Energy Neutrinos by Iodine 127

    Full text link
    We discuss and improve a recent treatment of the absorption of solar neutrinos by 127{}^{127}I, in connection with a proposed solar neutrino detector. With standard-solar-model fluxes and an in-medium value of -1.0 for the axial-vector coupling constant gAg_A, we obtain a 8{}^8B-neutrino cross section of 3.3×1042\times 10^{-42}, about 50\% larger than in our previous work, and a 7{}^7Be cross section that is less certain but nevertheless also larger than before. We then apply the improved techniques to higher incoming energies that obtain at the LAMPF beam dump, where an experiment is underway to finalize a calibration of the 127{}^{127}I with electron neutrinos from muon decay. We find that forbidden operators, which play no role in solar-neutrino absorption, contribute nonnegligibly to the LAMPF cross section, and that the preliminary LAMPF mean value is significantly larger than our prediction.Comment: 13 pages + 3 postscript figures (attached), in RevTex 3 , submitted to Phys. Rev.

    Nuclear Skins and Halos in the Mean-Field Theory

    Full text link
    Nuclei with large neutron-to-proton ratios have neutron skins, which manifest themselves in an excess of neutrons at distances greater than the radius of the proton distribution. In addition, some drip-line nuclei develop very extended halo structures. The neutron halo is a threshold effect; it appears when the valence neutrons occupy weakly bound orbits. In this study, nuclear skins and halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov and relativistic Hartree-Bogoliubov theories for spherical shapes. It is demonstrated that skins, halos, and surface thickness can be analyzed in a model-independent way in terms of nucleonic density form factors. Such an analysis allows for defining a quantitative measure of the halo size. The systematic behavior of skins, halos, and surface thickness in even-even nuclei is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical Review

    Can tonne-scale direct detection experiments discover nuclear dark matter?

    Get PDF
    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3σ3\,\sigma level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2σ2\,\sigma distinction is possible by these experiments individually, while 3σ3\,\sigma sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3σ3\,\sigma.Comment: 23 pages, 7 multipanel figure

    Dark Matter Search with CUORE-0 and CUORE

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale experiment made of TeO2 bolometers that will probe the neutrinoless double beta decay of 130Te. Excellent energy resolution, low threshold and low background make CUORE sensitive to nuclear recoils, allowing a search for dark matter interactions. With a total mass of 741 kg of TeO2, CUORE can search for an annual modulation of the counting rate at low energies. We present data obtained with CUORE-like detectors and the prospects for a dark matter search in CUORE-0, a 40-kg prototype, and CUORE

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Experimental studies of the effect of bupivacaine on peripheral nerves

    No full text
    Journal of Hand Surgery12 B119-22JHAS

    141. Nuclear charge distribution

    No full text
    corecore