53 research outputs found
Superposition of photon- and phonon- assisted tunneling in coupled quantum dots
We report on electron transport through an artificial molecule formed by two
tunnel coupled quantum dots, which are laterally confined in a two-dimensional
electron system of an AlGaAs/GaAs heterostructure. Coherent
molecular states in the coupled dots are probed by photon-assisted tunneling
(PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between
the microwave photons and the molecular states. Below 8 GHz, a pronounced
superposition of phonon- and photon-assisted tunneling is observed. Coherent
superposition of molecular states persists under excitation of acoustic
phonons.Comment: 5 pages, 4 figure
Adiabatic steering and determination of dephasing rates in double dot qubits
We propose a scheme to prepare arbitrary superpositions of quantum states in
double quantum--dots irradiated by coherent microwave pulses. Solving the
equations of motion for the dot density matrix, we find that dephasing rates
for such superpositions can be quantitatively infered from additional electron
current pulses that appear due to a controllable breakdown of coherent
population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.
Determination of the complex microwave photoconductance of a single quantum dot
A small quantum dot containing approximately 20 electrons is realized in a
two-dimensional electron system of an AlGaAs/GaAs heterostructure. Conventional
transport and microwave spectroscopy reveal the dot's electronic structure. By
applying a coherently coupled two-source technique, we are able to determine
the complex microwave induced tunnel current. The amplitude of this
photoconductance resolves photon-assisted tunneling (PAT) in the non-linear
regime through the ground state and an excited state as well. The out-of-phase
component (susceptance) allows to study charge relaxation within the quantum
dot on a time scale comparable to the microwave beat period.Comment: 5.5 pages, 6 figures, accepted by Phys. Rev. B (Jan. B15 2001
Adiabatic Transfer of Electrons in Coupled Quantum Dots
We investigate the influence of dissipation on one- and two-qubit rotations
in coupled semiconductor quantum dots, using a (pseudo) spin-boson model with
adiabatically varying parameters. For weak dissipation, we solve a master
equation, compare with direct perturbation theory, and derive an expression for
the `fidelity loss' during a simple operation that adiabatically moves an
electron between two coupled dots. We discuss the possibility of visualizing
coherent quantum oscillations in electron `pump' currents, combining quantum
adiabaticity and Coulomb blockade. In two-qubit spin-swap operations where the
role of intermediate charge states has been discussed recently, we apply our
formalism to calculate the fidelity loss due to charge tunneling between two
dots.Comment: 13 pages, 8 figures, to appear in Phys. Rev.
Steering of a Bosonic Mode with a Double Quantum Dot
We investigate the transport and coherence properties of a double quantum dot
coupled to a single damped boson mode. Our numerically results reveal how the
properties of the boson distribution can be steered by altering parameters of
the electronic system such as the energy difference between the dots.
Quadrature amplitude variances and the Wigner function are employed to
illustrate how the state of the boson mode can be controlled by a stationary
electron current through the dots.Comment: 10 pages, 6 figures, to appear in Phys. Rev.
Nuclear spin relaxation probed by a single quantum dot
We present measurements on nuclear spin relaxation probed by a single quantum
dot in a high-mobility electron gas. Current passing through the dot leads to a
spin transfer from the electronic to the nuclear spin system. Applying electron
spin resonance the transfer mechanism can directly be tuned. Additionally, the
dependence of nuclear spin relaxation on the dot gate voltage is observed. We
find electron-nuclear relaxation times of the order of 10 minutes
Fano resonances and Aharonov-Bohm effects in transport through a square quantum dot molecule
We study the Aharonov-Bohm effect in a coupled 22 quantum dot array
with two-terminals. A striking conductance dip arising from the Fano
interference is found as the energy levels of the intermediate dots are
mismatched, which is lifted in the presence of a magnetic flux. A novel five
peak structure is observed in the conductance for large mismatch. The
Aharonov-Bohm evolution of the linear conductance strongly depends on the
configuration of dot levels and interdot and dot-lead coupling strengths. In
addition, the magnetic flux and asymmetry between dot-lead couplings can induce
the splitting and combination of the conductance peak(s).Comment: 15 pages, 7 figures, Revtex, to be published in Phys. Rev.
Renormalization approach for quantum-dot structures under strong alternating fields
We develop a renormalization method for calculating the electronic structure
of single and double quantum dots under intense ac fields. The nanostructures
are emulated by lattice models with a clear continuum limit of the
effective-mass and single-particle approximations. The coupling to the ac field
is treated non-perturbatively by means of the Floquet Hamiltonian. The
renormalization approach allows the study of dressed states of the nanoscopic
system with realistic geometries as well arbitrary strong ac fields. We give
examples of a single quantum dot, emphasizing the analysis of the
effective-mass limit for lattice models, and double-dot structures, where we
discuss the limit of the well used two-level approximation.Comment: 6 pages, 7 figure
Coulomb correlations effects on localized charge relaxation in the coupled quantum dots
We analyzed localized charge time evolution in the system of two interacting
quantum dots (QD) (artificial molecule) coupled with the continuous spectrum
states. We demonstrated that Coulomb interaction modifies relaxation rates and
is responsible for non-monotonic time evolution of the localized charge. We
suggested new mechanism of this non-monotonic charge time evolution connected
with charge redistribution between different relaxation channels in each QD.Comment: 10 pages, 10 figure
Spin interactions and switching in vertically tunnel-coupled quantum dots
We determine the spin exchange coupling J between two electrons located in
two vertically tunnel-coupled quantum dots, and its variation when magnetic (B)
and electric (E) fields (both in-plane and perpendicular) are applied. We
predict a strong decrease of J as the in-plane B field is increased, mainly due
to orbital compression. Combined with the Zeeman splitting, this leads to a
singlet-triplet crossing, which can be observed as a pronounced jump in the
magnetization at in-plane fields of a few Tesla, and perpendicular fields of
the order of 10 Tesla for typical self-assembled dots. We use harmonic
potentials to model the confining of electrons, and calculate the exchange J
using the Heitler-London and Hund-Mulliken technique, including the long-range
Coulomb interaction. With our results we provide experimental criteria for the
distinction of singlet and triplet states and therefore for microscopic spin
measurements. In the case where dots of different sizes are coupled, we present
a simple method to switch on and off the spin coupling with exponential
sensitivity using an in-plane electric field. Switching the spin coupling is
essential for quantum computation using electronic spins as qubits.Comment: 13 pages, 9 figure
- …