1,260 research outputs found

    Two decades of pulsar timing of Vela

    Get PDF
    Pulsar timing at the Mt Pleasant observatory has focused on Vela, which can be tracked for 18 hours of the day. These nearly continuous timing records extend over 24 years allowing a greater insight into details of timing noise, micro glitches and other more exotic effects. In particular we report the glitch parameters of the 2004 event, along with the reconfirmation that the spin up for the Vela pulsar occurs instantaneously to the accuracy of the data. This places a lower limit of about 30 seconds for the acceleration of the pulsar to the new rotational frequency. We also confirm of the low braking index for Vela, and the continued fall in the DM for this pulsar.Comment: Isolated Neutron Stars conference, London, April 24-28 200

    A medieval multiverse?: Mathematical modelling of the thirteenth century universe of Robert Grosseteste

    Get PDF
    In his treatise on light, written about 1225, Robert Grosseteste describes a cosmological model in which the universe is created in a big-bang-like explosion and subsequent condensation. He postulates that the fundamental coupling of light and matter gives rises to the material body of the entire cosmos. Expansion is arrested when matter reaches a minimum density and subsequent emission of light from the outer region leads to compression and rarefaction of the inner bodily mass so as to create nine celestial spheres, with an imperfect residual core. In this paper, we reformulate the Latin description in terms of a modern mathematical model, teasing out consequences implicit in the text, but which the author would not have had the tools to explore. The equations which describe the coupling of light and matter are solved numerically, subjected to initial conditions and critical criteria consistent with the text. Formation of a universe with a non-infinite number of perfected spheres is extremely sensitive to the initial conditions, the intensity of the light and the transparency of these spheres. In this ‘medieval multiverse’, only a small range of opacity and initial density profiles leads to a stable universe with nine perfected spheres. As in current cosmological thinking, the existence of Grosseteste’s universe relies on a very special combination of fundamental parameters

    The generalized Robinson-Foulds metric

    Get PDF
    The Robinson-Foulds (RF) metric is arguably the most widely used measure of phylogenetic tree similarity, despite its well-known shortcomings: For example, moving a single taxon in a tree can result in a tree that has maximum distance to the original one; but the two trees are identical if we remove the single taxon. To this end, we propose a natural extension of the RF metric that does not simply count identical clades but instead, also takes similar clades into consideration. In contrast to previous approaches, our model requires the matching between clades to respect the structure of the two trees, a property that the classical RF metric exhibits, too. We show that computing this generalized RF metric is, unfortunately, NP-hard. We then present a simple Integer Linear Program for its computation, and evaluate it by an all-against-all comparison of 100 trees from a benchmark data set. We find that matchings that respect the tree structure differ significantly from those that do not, underlining the importance of this natural condition.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Harmonic E/B decomposition for CMB polarization maps

    Full text link
    The full sky cosmic microwave background polarization field can be decomposed into 'electric' (E) and 'magnetic' (B) components that are signatures of distinct physical processes. We give a general construction that achieves separation of E and B modes on arbitrary sections of the sky at the expense of increasing the noise. When E modes are present on all scales the separation of all of the B signal is no longer possible: there are inevitably ambiguous modes that cannot be separated. We discuss the practicality of performing E/B decomposition on large scales with realistic non-symmetric sky-cuts, and show that separation on large scales is possible by retaining only the well supported modes. The large scale modes potentially contain a great deal of useful information, and E/B separation at the level of the map is essential for clean detection of B without confusion from cosmic variance due to the E signal. We give simple matrix manipulations for creating pure E and B maps of the large scale signal for general sky cuts. We demonstrate that the method works well in a realistic case and give estimates of the performance with data from the Planck satellite. In the appendix we discuss the simple analytic case of an azimuthally symmetric cut, and show that exact E/B separation is possible on an azimuthally symmetric cut with a finite number of non-intersecting circular cuts around foreground sources.Comment: Fixed numerical bug in tensor C_l: Planck detection probability results updated (supersedes PRD version). Sample code and additional examples available at http://cosmologist.info/polar

    Scaling algebras and pointlike fields: A nonperturbative approach to renormalization

    Full text link
    We present a method of short-distance analysis in quantum field theory that does not require choosing a renormalization prescription a priori. We set out from a local net of algebras with associated pointlike quantum fields. The net has a naturally defined scaling limit in the sense of Buchholz and Verch; we investigate the effect of this limit on the pointlike fields. Both for the fields and their operator product expansions, a well-defined limit procedure can be established. This can always be interpreted in the usual sense of multiplicative renormalization, where the renormalization factors are determined by our analysis. We also consider the limits of symmetry actions. In particular, for suitable limit states, the group of scaling transformations induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math. Phys.; 37 page

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    The History of Galaxy Formation in Groups: An Observational Perspective

    Get PDF
    We present a pedagogical review on the formation and evolution of galaxies in groups, utilizing observational information from the Local Group to galaxies at z~6. The majority of galaxies in the nearby universe are found in groups, and galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby groups (~1 Mpc). This suggests that the group environment may play a role in the formation of most galaxies. The Local Group, and other nearby groups, display a diversity in star formation and morphological properties that puts limits on how, and when, galaxies in groups formed. Effects that depend on an intragroup medium, such as ram-pressure and strangulation, are likely not major mechanisms driving group galaxy evolution. Simple dynamical friction arguments however show that galaxy mergers should be common, and a dominant process for driving evolution. While mergers between L_* galaxies are observed to be rare at z < 1, they are much more common at earlier times. This is due to the increased density of the universe, and to the fact that high mass galaxies are highly clustered on the scale of groups. We furthermore discus why the local number density environment of galaxies strongly correlates with galaxy properties, and why the group environment may be the preferred method for establishing the relationship between properties of galaxies and their local density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    Scaling of the B and D meson spectrum in lattice QCD

    Get PDF
    We give results for the BB and the DD meson spectrum using NRQCD on the lattice in the quenched approximation. The masses of radially and orbitally excited states are calculated as well as SS-wave hyperfine and PP-wave fine structure. Radially excited PP-states are observed for the first time. Radial and orbital excitation energies match well to experiment, as does the strange-non-strange SS-wave splitting. We compare the light and heavy quark mass dependence of various splittings to experiment. Our BB-results cover a range in lattice spacings of more than a factor of two. Our DD-results are from a single lattice spacing and we compare them to numbers in the literature from finer lattices using other methods. We see no significant dependence of physical results on the lattice spacing. PACS: 11.15.Ha 12.38.Gc 14.40.Lb 14.40.NdComment: 78 pages, 29 tables, 30 figures Revised version. Minor corrections to spelling and wordin

    Does accelerating universe indicates Brans-Dicke theory

    Full text link
    The evolution of universe in Brans-Dicke (BD) theory is discussed in this paper. Considering a parameterized scenario for BD scalar field ϕ=ϕ0aα\phi=\phi_{0}a^{\alpha} which plays the role of gravitational "constant" GG, we apply the Markov Chain Monte Carlo method to investigate a global constraints on BD theory with a self-interacting potential according to the current observational data: Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. It is shown that an expanded universe from deceleration to acceleration is given in this theory, and the constraint results of dimensionless matter density Ω0m\Omega_{0m} and parameter α\alpha are, Ω0m=0.286−0.039−0.047+0.037+0.050\Omega_{0m}=0.286^{+0.037+0.050}_{-0.039-0.047} and α=0.0046−0.0171−0.0206+0.0149+0.0171\alpha=0.0046^{+0.0149+0.0171}_{-0.0171-0.0206} which is consistent with the result of current experiment exploration, âˆŁÎ±âˆŁâ‰€0.132124\mid\alpha\mid \leq 0.132124. In addition, we use the geometrical diagnostic method, jerk parameter jj, to distinguish the BD theory and cosmological constant model in Einstein's theory of general relativity.Comment: 16 pages, 3 figure
    • 

    corecore