119 research outputs found

    Airway epithelial cells: Current concepts and challenges

    Get PDF
    The adult human bronchial tree is covered with a continuous layer of epithelial cells that play a critical role in maintaining the conduit for air, and which are central to the defenses of the lung against inhaled environmental concomitants. The epithelial sheet functions as an interdependent unit with the other lung components. Importantly, the structure and/or function of airway epithelium is deranged in major lung disorders, including chronic obstructive pulmonary disease, asthma, and bronchogenic carcinoma. Investigations regarding the airway epithelium have led to many advances over the past few decades, but new developments in genetics and stem cell/ progenitor cell biology have opened the door to understanding how the airway epithelium is developed and maintained, and how it responds to environmental stress. This article provides an overview of the current state of knowledge regarding airway epithelial stem/ progenitor cells, gene expression, cell-cell interactions, and less frequent cell types, and discusses the challenges for future areas of investigation regarding the airway epitheliumin health and disease

    Correction to:The genetic architecture of Plakophilin 2 cardiomyopathy (Genetics in Medicine, (2021), 23, 10, (1961-1968), 10.1038/s41436-021-01233-7)

    Get PDF
    Due to a processing error Cynthia James, Brittney Murray, and Crystal Tichnell were assigned to the wrong affiliation. Cynthia James, Brittney Murray, and Crystal Tichnell have as their affiliation 5 Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA. In addition Hana Zouk, Megan Hawley, and Birgit Funke were assigned only to affiliation 3; they also have affiliation 4 Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. The original article has been corrected

    Resident Cellular Components of the Human Lung Current Knowledge and Goals for Research on Cell Phenotyping and Function

    Get PDF
    The purpose of the workshop was to identify still obscure or novel cellular components of the lung, to determine cell function in lung development and in health that impacts on disease, and to decide promising avenues for future research to extract and phenotype these cells. Since robust technologies are now available to identify, sort, purify, culture, and phenotype cells, progress is now within sight to unravel the origins and functional capabilities of lung cells in developmental stages and in disease. The Workshop's agenda was to first discuss the lung's embryologic development, including progenitor and stem cells, and then assess the functional and structural cells in three main compartments of the lung: (1) airway cells in bronchial and bronchiolar epithelium and bronchial glands (basal, secretory, ciliated, Clara, and neuroendocrine cells); (2) alveolar unit cells (Type 1 cells, Type 2 cells, and fibroblasts in the interstitium); and (3) pulmonary vascular cells (endothelial cells from different vascular structures, smooth muscle cells, and adventitial fibroblasts). The main recommendations were to: (1) characterize with better cell markers, both surface and nonsurface, the various cells within the lung, including progenitor cells and stem cells; (2) obtain more knowledge about gene expression in specific cell types in health and disease, which will provide insights into biological and pathologic processes; (3) develop more methodologies for cell culture, isolation, sorting, co-culture, and immortalization; and (4) promote tissue banks to facilitate the procurement of tissue from normal and from diseased lung for analysis at all levels

    Comprehensive lung injury pathology induced by mTOR inhibitors

    Get PDF
    Molecular Targets in Oncology[Abstract] Interstitial lung disease is a rare side effect of temsirolimus treatment in renal cancer patients. Pulmonary fibrosis is characterised by the accumulation of extracellular matrix collagen, fibroblast proliferation and migration, and loss of alveolar gas exchange units. Previous studies of pulmonary fibrosis have mainly focused on the fibro-proliferative process in the lungs. However, the molecular mechanism by which sirolimus promotes lung fibrosis remains elusive. Here, we propose an overall cascade hypothesis of interstitial lung diseases that represents a common, partly underlying synergism among them as well as the lung pathogenesis side effects of mammalian target of rapamycin inhibitors

    Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS

    Get PDF
    Levels of iron and iron-related proteins including ferritin are higher in the lung tissue and lavage fluid of individuals with chronic obstructive pulmonary disease (COPD), when compared to healthy controls. Whether more iron in the extracellular milieu of the lung associates with distinct clinical phenotypes of COPD, including increased exacerbation susceptibility, is unknown. We measured iron and ferritin levels in the bronchoalveolar lavage fluid (BALF) of participants enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD (SPIROMICS) bronchoscopy sub-study (n = 195). BALF Iron parameters were compared to systemic markers of iron availability and tested for association with FEV1 % predicted and exacerbation frequency. Exacerbations were modelled using a zero-inflated negative binomial model using age, sex, smoking, and FEV1 % predicted as clinical covariates. BALF iron and ferritin were higher in participants with COPD and in smokers without COPD when compared to non-smoker control participants but did not correlate with systemic iron markers. BALF ferritin and iron were elevated in participants who had COPD exacerbations, with a 2-fold increase in BALF ferritin and iron conveying a 24% and 2-fold increase in exacerbation risk, respectively. Similar associations were not observed with plasma ferritin. Increased airway iron levels may be representative of a distinct pathobiological phenomenon that results in more frequent COPD exacerbation events, contributing to disease progression in these individuals

    Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort

    Get PDF
    Background Increased concentrations of eosinophils in blood and sputum in chronic obstructive pulmonary disease (COPD) have been associated with increased frequency of exacerbations, reduced lung function, and corticosteroid responsiveness. We aimed to assess whether high eosinophil concentrations in either sputum or blood are associated with a severe COPD phenotype, including greater exacerbation frequency, and whether blood eosinophils are predictive of sputum eosinophils. Methods We did a multicentre observational study analysing comprehensive baseline data from SPIROMICS in patients with COPD aged 40–80 years who had a smoking history of at least 20 pack-years, recruited from six clinical sites and additional subsites in the USA between Nov 12, 2010, and April 21, 2015. Inclusion criteria for this analysis were SPIROMICS baseline visit data with complete blood cell counts and, in a subset, acceptable sputum counts. We stratified patients on the basis of blood and sputum eosinophil concentrations and compared their demographic characteristics, as well as results from questionnaires, clinical assessments, and quantitative CT (QCT). We also analysed whether blood eosinophil concentrations reliably predicted sputum eosinophil concentrations. This study is registered with ClinicalTrials.gov (NCT01969344). Findings Of the 2737 patients recruited to SPIROMICS, 2499 patients were smokers and had available blood counts, and so were stratified by mean blood eosinophil count: 1262 patients with low (<200 cells per μL) and 1237 with high (≥200 cells per μL) blood eosinophil counts. 827 patients were eligible for stratification by mean sputum eosinophil percentage: 656 with low (<1·25%) and 171 with high (≥1·25%) sputum eosinophil percentages. The high sputum eosinophil group had significantly lower median FEV1 percentage predicted than the low sputum eosinophil group both before (65·7% [IQR 51·8–81·3] vs 75·7% [59·3–90·2], p<0·0001) and after (77·3% [63·1–88·5] vs 82·9% [67·8–95·9], p=0·001) bronchodilation. QCT density measures for emphysema and air trapping were significantly higher in the high sputum eosinophil group than the low sputum eosinophil group. Exacerbations requiring corticosteroids treatment were more common in the high versus low sputum eosinophil group (p=0·002). FEV1 percentage predicted was significantly different between low and high blood eosinophil groups, but differences were less than those observed between the sputum groups. The high blood eosinophil group had slightly increased airway wall thickness (0·02 mm difference, p=0·032), higher St George Respiratory Questionnaire symptom scores (p=0·037), and increased wheezing (p=0·018), but no evidence of an association with COPD exacerbations (p=0·35) or the other indices of COPD severity, such as emphysema measured by CT density, COPD assessment test scores, Body-mass index, airflow Obstruction, Dyspnea, and Exercise index, or Global Initiative for Chronic Obstructive Lung Disease stage. Blood eosinophil counts showed a weak but significant association with sputum eosinophil counts (receiver operating characteristic area under the curve of 0·64, p<0·0001), but with a high false-discovery rate of 72%. Interpretation In a large, well characterised cohort of former and current smoking patients with a broad range of COPD severity, high concentrations of sputum eosinophils were a better biomarker than high concentrations of blood eosinophils to identify a patient subgroup with more severe disease, more frequent exacerbations, and increased emphysema by QCT. Blood eosinophils alone were not a reliable biomarker for COPD severity or exacerbations, or for sputum eosinophils. Clinical trials targeting eosinophilic inflammation in COPD should consider assessing sputum eosinophils. Funding National Institutes of Health, and National Heart, Lung, and Blood Institute

    Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort

    Get PDF
    Background Present treatment strategies to stratify exacerbation risk in patients with chronic obstructive pulmonary disease (COPD) rely on a history of two or more events in the previous year. We aimed to understand year to year variability in exacerbations and factors associated with consistent exacerbations over time. Methods In this longitudinal, prospective analysis of exacerbations in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort, we analysed patients aged 40–80 years with COPD for whom 3 years of prospective data were available, identified through various means including care at academic and non-academic medical centres, word of mouth, and existing patient registries. Participants were enrolled in the study between Nov 12, 2010, and July 31, 2015. We classified patients according to yearly exacerbation frequency: no exacerbations in any year; one exacerbation in every year during 3 years of follow-up; and those with inconsistent exacerbations (individuals who had both years with exacerbations and years without during the 3 years of follow-up). Participants were characterised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric category (1–4) on the basis of post-bronchodilator FEV1. Stepwise logistic regression was used to compare factors associated with one or more acute exacerbations of COPD every year for 3 years versus no exacerbations in the same timeframe. Additionally, a stepwise zero-inflated negative binomial model was used to assess predictors of exacerbation count during follow-up in all patients with available data. Baseline symptom burden was assessed with the COPD assessment test. This trial is registered with ClinicalTrials.gov, number NCT01969344. Findings 2981 patients were enrolled during the study. 1843 patients had COPD, of which 1105 patients had 3 years of complete, prospective follow-up data. 538 (49%) of 1105 patients had at least one acute exacerbation during the 3 years of follow-up, whereas 567 (51%) had none. 82 (7%) of 1105 patients had at least one acute exacerbation each year, whereas only 23 (2%) had two or more acute exacerbations in each year. An inconsistent pattern (both years with and without acute exacerbations) was common (456 [41%] of the group), particularly among GOLD stages 3 and 4 patients (256 [56%] of 456). In logistic regression, consistent acute exacerbations (≥1 event per year for 3 years) were associated with higher baseline symptom burden, previous exacerbations, greater evidence of small airway abnormality on CT, lower interleukin-15 concentrations, and higher interleukin-8 concentrations, than were no acute exacerbations. Interpretation Although acute exacerbations are common, the exacerbation status of most individuals varies markedly from year to year. Among patients who had any acute exacerbation over 3 years, very few repeatedly had two or more events per year. In addition to symptoms and history of exacerbations in the year before study enrolment, we identified several novel biomarkers associated with consistent exacerbations, including CT-defined small airway abnormality, and interleukin-15 and interleukin-8 concentrations. Funding National Institutes of Health, and National Heart, Lung, and Blood Institute

    Aspirin Use and Respiratory Morbidity in COPD: A Propensity Score-Matched Analysis in Subpopulations and Intermediate Outcome Measures in COPD Study

    Get PDF
    Background: Aspirin use in COPD has been associated with reduced all-cause mortality in meta-regression analysis with few equivocal studies. However, the effect of aspirin on COPD morbidity is unknown. Methods: Self-reported daily aspirin use was obtained at baseline from SPIROMICS participants with COPD (FEV 1 /FVC < 70%). Acute exacerbations of COPD (AECOPD) were prospectively ascertained through quarterly structured telephone questionnaires up to 3 years and categorized as moderate (symptoms treated with antibiotics or oral corticosteroids) or severe (requiring ED visit or hospitalization). Aspirin users were matched one-to-one with nonusers, based on propensity score. The association of aspirin use with total, moderate, and severe AECOPD was investigated using zero-inflated negative binomial models. Linear or logistic regression was used to investigate the association with baseline respiratory symptoms, quality of life, and exercise tolerance. Results: Among 1,698 participants, 45% reported daily aspirin use at baseline. Propensity score matching resulted in 503 participant pairs. Aspirin users had a lower incidence rate of total AECOPD (adjusted incidence rate ratio [IRR], 0.78; 95% CI, 0.65-0.94), with similar effect for moderate but not severe AECOPD (IRR, 0.86; 95% CI, 0.63-1.18). Aspirin use was associated with lower total St. George's Respiratory Questionnaire score (β, –2.2; 95% CI, –4.1 to –0.4), reduced odds of moderate-severe dyspnea (modified Medical Research Council questionnaire score ≥ 2; adjusted odds ratio, 0.69; 95% CI, 0.51-0.93), and COPD Assessment Test score (β, –1.1; 95% CI, –1.9 to –0.2) but not 6-min walk distance (β, 0.7 m; 95% CI, –14.3 to 15.6). Conclusions: Daily aspirin use is associated with reduced rate of COPD exacerbations, less dyspnea, and better quality of life. Randomized clinical trials of aspirin use in COPD are warranted to account for unmeasured and residual confounding. Trial Registry: ClinicalTrials.gov; No.: NCT01969344; URL: www.clinicaltrials.go

    Rural residence and chronic obstructive pulmonary disease exacerbations: Analysis of the SPIROMICS cohort

    Get PDF
    Rationale: Rural residence is associated with poor outcomes in several chronic diseases. The association between rural residence and chronic obstructive pulmonary disease (COPD) exacerbations remains unclear. Objectives: In this work, we sought to determine the independent association between rural residence and COPD-related outcomes, including COPD exacerbations, airflow obstruction, and symptom burden. Methods: A total of 1,684 SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) participants with forced expiratory volume in 1 second/forced vital capacity <, 0.70 had geocoding-defined rural-urban residence status determined (N = 204 rural and N = 1,480 urban). Univariate and multivariate logistic and negative binomial regressions were performed to assess the independent association between rurality and COPD outcomes, including exacerbations, lung function, and symptom burden. The primary exposure of interest was rural residence, determined by geocoding of the home address to the block level at the time of study enrollment. Additional covariates of interest included demographic and clinical characteristics, occupation, and occupational exposures. The primary outcome measures were exacerbations determined over a 1-year course after enrollment by quarterly telephone calls and at an annual research clinic visit. The odds ratio (OR) and incidence rate ratio (IRR) of exacerbations that required treatment with medications, including steroids or antibiotics (total exacerbations), and exacerbations leading to hospitalization (severe exacerbations) were determined after adjusting for relevant covariates. Results: Rural residence was independently associated with a 70% increase in the odds of total exacerbations (OR, 1.70 [95% confidence interval (CI), 1.13-2.56]; P = 0.012) and a 46% higher incidence rate of total exacerbations (IRR 1.46 [95% CI, 1.02-2.10]; P = 0.039). There was no association between rural residence and severe exacerbations. Agricultural occupation was independently associated with increased odds and incidence of total and severe exacerbations. Inclusion of agricultural occupation in the analysis attenuated the association between rural residence and the odds and incidence rate of total exacerbations (OR, 1.52 [95% CI, 1.00-2.32]; P = 0.05 and IRR 1.39 [95% CI, 0.97-1.99]; P = 0.07). There was no difference in symptoms or airflow obstruction between rural and urban participants. Conclusions: Rural residence is independently associated with increased odds and incidence of total, but not severe, COPD exacerbations. These associations are not fully explained by agriculture-related exposures, highlighting the need for future research into potential mechanisms of the increased risk of COPD exacerbations in the rural population
    • …
    corecore