14 research outputs found

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Antioxidant activity of the microalga Spirulina maxima

    No full text
    Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated with and without the extract at 37oC. The IC50 (concentration which causes a 50% reduction of oxidation) of the extract in this system was 0.18 mg/ml. The in vivo antioxidant capacity was evaluated in plasma and liver of animals receiving a daily dose of 5 mg for 2 and 7 weeks. Plasma antioxidant capacity was measured in brain homogenate incubated for 1 h at 37oC. The production of oxidized compounds in liver after 2 h of incubation at 37oC was measured in terms of thiobarbituric acid reactant substances (TBARS) in control and experimental groups. Upon treatment, the antioxidant capacity of plasma was 71% for the experimental group and 54% for the control group. Data from liver spontaneous peroxidation studies were not significantly different between groups. The amounts of phenolic acids, <FONT FACE="Symbol">a</FONT>-tocopherol and ß-carotene were determined in Spirulina extracts. The results obtained indicate that Spirulina provides some antioxidant protection for both in vitro and in vivo systems

    Retenção da água em solo sob diferentes usos no ecossistema tabuleiros costeiros Water retention in a tableland ecosystem soil under different land use

    No full text
    Avaliaram-se as alterações na quantidade e qualidade dos poros de um Latossolo-Amarelo álico coeso, do ecossistema Tabuleiros Costeiros, em função do uso (citros, mandioca e mata) com base nas curvas de retenção do solo, determinadas com 10 repetições em amostras de solo com estrutura indeformada, coletadas aleatoriamente na profundidade de 0,10 e 0,30 m, em cada tratamento. As tensões aplicadas foram de 0,5; 1; 2 e 5 kPa em funil de placa porosa e 30, 70, 100, 500 e 1500 kPa em câmara de pressão, também com placa porosa. Os resultados de cada tensão foram avaliados pelo teste de Tukey, a nível de 5% de probabilidade e, para fins de cálculo da condutividade hidráulica relativa, os valores de umidade versus tensão foram ajustados à equação de van Genuchten. Verificou-se que houve redução da macroporosidade do solo com o cultivo e o manejo na cultura de citros; além disso, constatou-se, ainda, que o uso do solo com mandioca aumentou a capacidade de água disponível do solo a 0,10 m de profundidade, em relação ao citros. Também relevante e que depreende dos resultados, é o fato de que, no citros, o manejo compactou o solo de maneira mais intensa que na mandioca, levando o solo, com esse cultivo (citros) a reter menos água que a mata a baixas tensões e mais água que a mata a altas tensões. A condutividade hidráulica relativa foi sempre inferior para o citros, fato que, aliado à macroporosidade inferior, faz com que se conclua que o solo com citros apresenta valores de condutividade hidráulica sempre inferiores que os da mata e mandioca.<br>Modifications in the quantity and quality of soil pores of a "Latossolo Amarelo alico" located in the Brazilian tableland ecosystem under three circumstances (natural forestry, cropped to citrus and cropped to cassava) were evaluated through analysis of water retention curves. These were determined with 10 replications using undisturbed soil samples (randomly collected in each treatment) submitted to tensions of 0.5, 1.0, 2.0, and 5.0 kPa (porous plate funnels) and 30.0, 70.0, 100.0, 500.0 and 1500.0 kPa (porous plate pressure chambers). After the application of the Tukey test at the level of 5% of probability to the results, it was possible to verify that there was a decrease of the soil macroporosity in the soil cropped under citrus. This fact, in association with the determination of the relative soil hydraulic conductivity, leads to a strong tendency that the soil with citrus presents hydraulic conductivity values always smaller than those for the soil with forestry and cassava. It was also verified that the soil, when cropped to cassava, increased its soil water holding capacity at the 0.10 m soil depth, in comparison with the soil cropped to citrus. A fact also relevant from the results was that the citrus soil management compacted more intensively the soil than the cassava one; this caused a lesser water retention in the soil under citrus than the soil under forestry at lower soil water tensions and more water retention than the forestry at higher tensions
    corecore