216 research outputs found

    Quantum Dissipative Dynamics of the Magnetic Resonance Force Microscope in the Single-Spin Detection Limit

    Full text link
    We study a model of a magnetic resonance force microscope (MRFM) based on the cyclic adiabatic inversion technique as a high-resolution tool to detect single electron spins. We investigate the quantum dynamics of spin and cantilever in the presence of coupling to an environment. To obtain the reduced dynamics of the combined system of spin and cantilever, we use the Feynman-Vernon influence functional and get results valid at any temperature as well as at arbitrary system-bath coupling strength. We propose that the MRFM can be used as a quantum measurement device, i.e., not only to detect the modulus of the spin but also its direction

    Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term Λ\Lambda

    Full text link
    In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW) cosmological models by considering three different forms of variable Λ\Lambda: Λ∌(a˙a)2\Lambda\sim(\frac{\dot{a}}{a})^2,Λ∌(aša)\Lambda\sim(\frac{\ddot{a}} {a}) and Λ∌ρ\Lambda \sim \rho. It is found that, the connecting free parameters of the models with cosmic matter and vacuum energy density parameters are equivalent, in the context of higher dimensional space time. The expression for the look back time, luminosity distance and angular diameter distance are also derived. This work has thus generalized to higher dimensions the well-known results in four dimensional space time. It is found that there may be significant difference in principle at least, from the analogous situation in four dimensional space time.Comment: 16 pages, no figur

    Five Dimensional Cosmological Models in General Relativity

    Full text link
    A Five dimensional Kaluza-Klein space-time is considered in the presence of a perfect fluid source with variable G and Λ\Lambda. An expanding universe is found by using a relation between the metric potential and an equation of state. The gravitational constant is found to decrease with time as G∌t−(1−ω)G \sim t^{-(1-\omega)} whereas the variation for the cosmological constant follows as Λ∌t−2\Lambda \sim t^{-2}, Λ∌(R˙/R)2\Lambda \sim (\dot R/R)^2 and Λ∌Rš/R\Lambda \sim \ddot R/R where ω\omega is the equation of state parameter and RR is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy

    Light-like noncommutativity and duality from open strings/branes

    Full text link
    In this paper we perform some non-trivial tests for the recently obtained open membrane/D-brane metrics and `generalized' noncommutativity parameters using Dp/NS5/M5-branes which have been deformed by light-like fields. The results obtained give further evidence that these open membrane/D-brane metrics and `generalized' noncommutativity parameters are correct. Further, we use the open brane data and supergravity duals to obtain more information about non-gravitational theories with light-like noncommutativity, or `generalized' light-like noncommutativity. In particular, we investigate various duality relations (strong coupling limits). In the light-like case we also comment on the relation between open membrane data (open membrane metric etc.) in six dimensions and open string data in five dimensions. Finally, we investigate the strong coupling limit (high energy limit) of five dimensional NCYM with \Theta^{12}=\Theta^{34}. In particular, we find that this NCYM theory can be UV completed by a DLCQ compactification of M-theory.Comment: 24 pages, Latex. v2:Comments and references added. v3:Version published in JHE

    Higher Dimensional Cosmological Implications Of A Decay Law For Λ\Lambda Term : Expressions For Some Observable Quantities

    Full text link
    Implications of cosmological model with a cosmological term of the form Λ=ÎČaša\Lambda = \beta \frac{\ddot {a}}{a}, where ÎČ\beta is a constant, are analyzed in multidimensional space time. The proper distance, the luminosity distance-redshift, the angular diameter distance-redshift, and look back time-redshift for the model are presented. It has been shown that such models are found to be compatible with the recent observations. This work has thus generalized to higher dimensions the well-know result in four dimensional space time. It is found that there may be significant difference in principle at least,from the analogous situation in four dimensional space time.Comment: 11 pages, no figur

    Accelerated expansion from braneworld models with variable vacuum energy

    Full text link
    In braneworld models a variable vacuum energy may appear if the size of the extra dimension changes during the evolution of the universe. In this scenario the acceleration of the universe is related not only to the variation of the cosmological term, but also to the time evolution of GG and, possibly, to the variation of other fundamental "constants" as well. This is because the expansion rate of the extra dimension appears in different contexts, notably in expressions concerning the variation of rest mass and electric charge. We concentrate our attention on spatially-flat, homogeneous and isotropic, brane-universes where the matter density decreases as an inverse power of the scale factor, similar (but at different rate) to the power law in FRW-universes of general relativity. We show that these braneworld cosmologies are consistent with the observed accelerating universe and other observational requirements. In particular, GG becomes constant and Λ(4)≈const×H2\Lambda_{(4)} \approx const \times H^2 asymptotically in time. Another important feature is that the models contain no "adjustable" parameters. All the quantities, even the five-dimensional ones, can be evaluated by means of measurements in 4D. We provide precise constrains on the cosmological parameters and demonstrate that the "effective" equation of state of the universe can, in principle, be determined by measurements of the deceleration parameter alone. We give an explicit expression relating the density parameters Ωρ\Omega_{\rho}, ΩΛ\Omega_{\Lambda} and the deceleration parameter qq. These results constitute concrete predictions that may help in observations for an experimental/observational test of the model.Comment: References added, typos correcte

    Cavity implementation of quantum interference in a Λ\Lambda-type atom

    Full text link
    A scheme for engineering quantum interference in a Λ\Lambda-type atom coupled to a frequency-tunable, single-mode cavity field with a pre-selected polarization at finite temperature is proposed. Interference-assisted population trapping, population inversions and probe gain at one sideband of the Autler-Townes spectrum are predicted for certain cavity resonant frequencies.Comment: 2 postscript figures are adde

    Supergravity Solutions for BI Dyons

    Get PDF
    We construct partially localized supergravity counterpart solutions to the 1/2 supersymmetric non-threshold and the 1/4 supersymmetric threshold bound state BI dyons in the D3-brane Dirac-Born-Infeld theory. Such supergravity solutions have all the parameters of the BI dyons. By applying the IIA/IIB T-duality transformations to these supergravity solutions, we obtain the supergravity counterpart solutions to 1/2 and 1/4 supersymmetric BIons carrying electric and magnetic charges of the worldvolume U(1) gauge field in the Dirac-Born-Infeld theory in other dimensions.Comment: 17 pages, REVTeX, revised version to appear in Phys. Rev.

    Universality of the Lyapunov regime for the Loschmidt echo

    Full text link
    The Loschmidt echo (LE) is a magnitude that measures the sensitivity of quantum dynamics to perturbations in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory, supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of the Fermi wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity with respect to the form of the perturbation and the behavior of individual (non-averaged) initial conditions. Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish between classical and quantum origin for the different terms of the LE. This approach renders an understanding for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (Ο=Ο0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur
    • 

    corecore