113 research outputs found

    Cangrelor for the management and prevention of arterial thrombosis

    Get PDF
    INTRODUCTION: Despite advances in antiplatelet therapy, the optimum antithrombotic regimen during percutaneous coronary intervention (PCI) remains to be determined. Cangrelor is an intravenous, reversibly-binding platelet P2Y12 receptor antagonist with ultra-rapid onset and offset of action that is approved in Europe and United States for use in patients undergoing PCI. This article describes the background for the development of cangrelor, the biology, pharmacology and clinical evidence supporting its use, and its likely position in the future. AREAS COVERED: The role of the platelet P2Y12 receptor in platelet biology and the implications of this for atherothrombotic disease are described. Currently unmet needs in antithrombotic management during and after PCI are discussed followed by a description of the chemistry, pharmacokinetics and pharmacodynamics of cangrelor, including its interactions with oral thienopyridines. Subsequently, the clinical trial evidence supporting its adoption into clinical practice is reviewed, including the evidence indicating its superiority over a strategy based on clopidogrel treatment alone. Expert commentary: The current status and future potential of cangrelor is discussed, including a view of its place in current clinical practice

    Choices for Potent Platelet Inhibition in Patients With Diabetes Mellitus

    Get PDF

    The role of platelet P2Y12 receptors in inflammation

    Get PDF
    Inflammation is a complex pathophysiological process underlying many clinical conditions. Platelets contribute to the thrombo-inflammatory response. Platelet P2Y12 receptors amplify platelet activation, potentiating platelet aggregation, degranulation and shape change. The contents of platelet alpha granules, in particular, act directly on leucocytes, including mediating platelet–leucocyte aggregation and activation via platelet P-selectin. Much evidence for the role of platelet P2Y12 receptors in inflammation comes from studies using antagonists of these receptors, such as the thienopyridines clopidogrel and prasugrel, and the cyclopentyltriazolopyrimidine ticagrelor, in animal and human experimental models. These suggest that antagonism of P2Y12 receptors decreases markers of inflammation with some evidence that this reduces incidence of adverse clinical sequelae during inflammatory conditions. Interpretation is complicated by pleiotropic effects such as those of the thienopyridines on circulating leucocyte numbers and of ticagrelor on adenosine reuptake. The available evidence suggests that P2Y12 receptors are prominent mediators of inflammation and P2Y12 receptor antagonism as a potentially powerful strategy in a broad range of inflammatory conditions

    Ticagrelor : clinical development and future potential

    Get PDF
    Platelets participate centrally in atherothrombosis, resulting in vessel occlusion and ischaemia. Consequently, optimisation of antiplatelet regimens has the potential to further reduce the residual burden of morbidity and mortality associated with atherosclerosis. Ticagrelor is a potent oral platelet P2Y12 receptor antagonist that (1) inhibits a central amplification pathway of platelet activation directly as well as via an active metabolite, (2) has a rapid onset and offset of antiplatelet action that remains consistent in the circulation during twice-daily administration and is amenable to reversal, (3) has inverse agonist properties, and (4) demonstrates pleiotropic effects that contribute to anti-thrombotic, anti-inflammatory and vasodilatory properties. These advantageous characteristics of ticagrelor have translated to beneficial clinical outcomes in patients with acute coronary syndromes or ischaemic stroke, during prolonged maintenance therapy in specific high-risk populations, and following percutaneous coronary intervention but not definitively following coronary artery bypass graft surgery or in peripheral artery disease patients. Novel innovative strategies aim to reduce the risk of bleeding during dual antiplatelet therapy via shortening the duration of treatment and replacing the standard-of-care with ticagrelor monotherapy. In cases where aspirin is an essential component in secondary prevention, dose modification when combined with ticagrelor may hypothetically provide desirable clinical outcomes following appropriate clinical assessment as predicted by pharmacological studies. Overall, the future management of acute coronary syndromes could potentially involve the dichotomisation of antithrombotic therapies, whereby only those with high-risk of ischaemia, without a high-risk of bleeding, receive ticagrelor plus very-low-dose aspirin, while ticagrelor monotherapy is administered to the remaining majority

    Treatment inequity in antiplatelet therapy for ischaemic heart disease in patients with advanced chronic kidney disease: releasing the evidence vacuum

    Get PDF
    Chronic kidney disease (CKD) is a global health problem and an independent risk factor for cardiovascular morbidity and mortality. Despite evidence-based therapies significantly improving cardiovascular mortality outcomes in the general population and those with non-dialysis-dependent CKD, this risk reduction has not translated to patients with end-stage kidney disease (ESKD). Absent from all major antiplatelet trials, this has led to insufficient safety data for P2Y12 inhibitor prescriptions and treatment inequity in this subpopulation. This review article presents an overview of the progression of research in understanding antiplatelet therapy for ischaemic heart disease in patients with advanced CKD (defined as eGFR <30 mL/min/1.73 m2). Beyond trial recruitment strategies, new approaches should focus on registry documentation by CKD stage, risk stratification with biomarkers associated with inflammation and haemorrhage and building a knowledge base on optimal duration of dual and single antiplatelet therapies

    Prevention of stroke in patients with chronic coronary syndromes or peripheral arterial disease

    Get PDF
    Stroke is a common and devastating condition caused by atherothrombosis, thromboembolism, or haemorrhage. Patients with chronic coronary syndromes (CCS) or peripheral artery disease (PAD) are at increased risk of stroke because of shared pathophysiological mechanisms and risk-factor profiles. A range of pharmacological and non-pharmacological strategies can help to reduce stroke risk in these groups. Antithrombotic therapy reduces the risk of major adverse cardiovascular events, including ischaemic stroke, but increases the incidence of haemorrhagic stroke. Nevertheless, the net clinical benefits mean antithrombotic therapy is recommended in those with CCS or symptomatic PAD. Whilst single antiplatelet therapy is recommended as chronic treatment, dual antiplatelet therapy should be considered for those with CCS with prior myocardial infarction at high ischaemic but low bleeding risk. Similarly, dual antithrombotic therapy with aspirin and very-low-dose rivaroxaban is an alternative in CCS, as well as in symptomatic PAD. Full-dose anticoagulation should always be considered in those with CCS/PAD and atrial fibrillation. Unless ischaemic risk is particularly high, antiplatelet therapy should not generally be added to full-dose anticoagulation. Optimization of blood pressure, low-density lipoprotein levels, glycaemic control, and lifestyle characteristics may also reduce stroke risk. Overall, a multifaceted approach is essential to best prevent stroke in patients with CCS/PAD

    The IL-1RI co-receptor TILRR (FREM1 isoform 2) controls aberrant inflammatory responses and development of vascular disease

    Get PDF
    Summary Expression of the interleukin-1 receptor type I (IL-1RI) co-receptor Toll-like and interleukin-1 receptor regulator (TILRR) is significantly increased in blood monocytes following myocardial infarction and in the atherosclerotic plaque, whereas levels in healthy tissue are low. TILRR association with IL-1RI at these sites causes aberrant activation of inflammatory genes, which underlie progression of cardiovascular disease. The authors show that genetic deletion of TILRR or antibody blocking of TILRR function reduces development of atherosclerotic plaques. Lesions exhibit decreased levels of monocytes, with increases in collagen and smooth muscle cells, characteristic features of stable plaques. The results suggest that TILRR may constitute a rational target for site- and signal-specific inhibition of vascular disease
    • …
    corecore